13.5 hours

Topic 1: Stoichiometric relationships

Essential idea: Physical and chemical properties depend on the ways in which different atoms combine.

1.1	1.1 Introduction to the particulate nature of matter and chemical change				
Nat	Nature of science:				
Mal	Making quantitative measurements with replicates to ensure reliability-definite and multiple proportions. (3.1)				
Understandings:		Inte	International-mindedness:		
•	Atoms of different elements combine in fixed ratios to form compounds, which have different properties from their component elements.	•	Chemical symbols and equations are international, enabling effective communication amongst scientists without need for translation.		
•	Mixtures contain more than one element and/or compound that are not chemically bonded together and so retain their individual properties.	•	IUPAC (International Union of Pure and Applied Chemistry) is the world authority in developing standardized nomenclature for both organic and		
•	Mixtures are either homogeneous or heterogeneous.	The	inorganic compounds.		
Ар	Applications and skills:		Theory of knowledge:		
•	Deduction of chemical equations when reactants and products are specified.	•	Chemical equations are the "language" of chemistry. How does the use of universal languages help and hinder the pursuit of knowledge?		
•	Application of the state symbols (s), (l), (g) and (aq) in equations.	•	Lavoisier's discovery of oxygen, which overturned the phlogiston theory of		
•	Explanation of observable changes in physical properties and temperature during changes of state.		combustion, is an example of a paradigm shift. How does scientific knowledge progress?		
Guidance:		Utilization:			
•	Balancing of equations should include a variety of types of reactions.	•	Refrigeration and how it is related to the changes of state.		
	Names of the changes of state—melting, freezing, vaporization (evaporation and boiling), condensation, sublimation and deposition—should be covered.	•	Atom economy.		
		•	Freeze-drying of foods.		

32

The term "latent heat" is not required.	Syllabus and cross-curricular links: Topic 4.1—deduction of formulae of ionic compounds	
Names and symbols of elements are in the data booklet in section 5.	Topic 5.1—enthalpy cycle reaction; standard state of an element or compound Topic 6.1—kinetic theory Topic 8.2—neutralization reactions Topic 10.2—combustion reactions Option A.4—liquid crystals	
	Aims:	
	• Aim 8 : The negative environmental impacts of refrigeration and air conditioning systems are significant. The use of CFCs as refrigerants has been a major contributor to ozone depletion.	

Essential idea: The mole makes it possible to correlate the number of particles with the mass that can be measured.

1.2	1.2 The mole concept				
	Nature of science:				
Con	ncepts-the concept of the mole developed from the related concept of "equivaler	nt mas	ss" in the early 19th century. (2.3)		
Und	derstandings:	Inte	ernational-mindedness:		
•	The mole is a fixed number of particles and refers to the amount, <i>n</i> , of substance.	•	The SI system (Système International d'Unités) refers to the metric system of measurement, based on seven base units.		
•	Masses of atoms are compared on a scale relative to ¹² C and are expressed as relative atomic mass (A_r) and relative formula/molecular mass (M_r).	•	The International Bureau of Weights and Measures (BIPM according to its French initials) is an international standards organization, which aims to ensure uniformity in the application of SI units around the world.		
•	Molar mass (<i>M</i>) has the units g mol ⁻¹ .	The	eory of knowledge:		
•	The empirical formula and molecular formula of a compound give the simplest ratio and the actual number of atoms present in a molecule respectively.	•	The magnitude of Avogadro's constant is beyond the scale of our everyday experience. How does our everyday experience limit our intuition?		
App	plications and skills:	Utilization:			
•	Calculation of the molar masses of atoms, ions, molecules and formula units.	•	Stoichiometric calculations are fundamental to chemical processes in		
•	Solution of problems involving the relationships between the number of particles, the amount of substance in moles and the mass in grams.	-	research and industry, for example in the food, medical, pharmaceutical and manufacturing industries.		
•	Interconversion of the percentage composition by mass and the empirical formula.	•	The molar volume for crystalline solids is determined by the technique of X-ray crystallography.		
•	Determination of the molecular formula of a compound from its empirical formula and molar mass.	Тор	abus and cross-curricular links: ic 2.1—the scale of atoms and their component particles ics 4.1, 4.3 and 4.5—lattice structure of ionic compounds, molecular structure		
•	Obtaining and using experimental data for deriving empirical formulas from reactions involving mass changes.	of covalent compounds and metallic lattice Topics 5.1 and 15.2—standard enthalpy and entropy changes defined per Topic 19.1—mole ratios of products in electrolysis			

1.2 The mole concept			
Guidance:		Aims:	
•	The value of the Avogadro's constant (<i>L</i> or N_A) is given in the data booklet in section 2 and will be given for paper 1 questions.	•	Aim 6: Experiments could include percent mass of hydrates, burning of magnesium or calculating Avogadro's number.
•	The generally used unit of molar mass (g mol ⁻¹) is a derived SI unit.	•	Aim 7: Data loggers can be used to measure mass changes during reactions.

Essential idea: Mole ratios in chemical equations can be used to calculate reacting ratios by mass and gas volume.

1.3 Reacting masses and volumes				
Nature of science:				
Making careful observations and obtaining evidence Understandings:	e for scientific theories—Avogadro	o's initial hypothesis. (1.8)		
• Reactants can be either limiting or excess.		 The SI unit of pressure is the Pascal (Pa), N m⁻², but many other units remain in common usage in different countries. These include atmosphere (atm), 		
• The experimental yield can be different from the	ne theoretical yield.	millimetres of mercury (mm Hg), Torr, bar and pounds per square inch (psi).		
 Avogadro's law enables the mole ratio of reac from volumes of the gases. 	ting gases to be determined	The bar (10 ⁵ Pa) is now widely used as a convenient unit, as it is very close to 1 atm. The SI unit for volume is m ³ , although litre is a commonly used unit.		
Ũ	t at appoified tomporature and	Theory of knowledge:		
 The molar volume of an ideal gas is a constar pressure. 	it at specified temperature and	Assigning numbers to the masses of the chemical elements has allowed		
 The molar concentration of a solution is detern and the volume of solution. 	nined by the amount of solute	chemistry to develop into a physical science. Why is mathematics so effective in describing the natural world?		
A standard solution is one of known concentra	ation	• The ideal gas equation can be deduced from a small number of assumptions		
Applications and skills:		of ideal behaviour. What is the role of reason, perception, intuition and imagination in the development of scientific models?		
Solution of problems relating to reacting quantities, limiting and excess		Utilization:		
 Solution of problems relating to reacting quan reactants, theoretical, experimental and perce 		Gas volume changes during chemical reactions are responsible for the		
Calculation of reacting volumes of gases using		inflation of air bags in vehicles and are the basis of many other explosive reactions, such as the decomposition of TNT (trinitrotoluene).		
• Solution of problems and analysis of graphs in between temperature, pressure and volume for		 The concept of percentage yield is vital in monitoring the efficiency of industrial processes. 		
• Solution of problems relating to the ideal gas	equation.	Syllabus and cross-curricular links:		
• Explanation of the deviation of real gases from	n ideal behaviour at low	Topic 4.4—intermolecular forces Topic 5.1—calculations of molar enthalpy changes		

1.3	1.3 Reacting masses and volumes				
•	temperature and high pressure. Obtaining and using experimental values to calculate the molar mass of a gas from the ideal gas equation. Solution of problems involving molar concentration, amount of solute and volume of solution.	Тор Тор Тор	ic 9.1—redox titrations ic 17.1—equilibrium calculations ic 18.2—acid-base titrations ic 21.1 and A.8—X-ray crystallography rsics topic 3.2—Ideal gas law		
• Gui	Use of the experimental method of titration to calculate the concentration of a solution by reference to a standard solution.	•	Aim 6: Experimental design could include excess and limiting reactants. Experiments could include gravimetric determination by precipitation of an insoluble salt. Aim 7: Data loggers can be used to measure temperature, pressure and		
•	Values for the molar volume of an ideal gas are given in the data booklet in section 2. The ideal gas equation, $PV = nRT$, and the value of the gas constant (<i>R</i>) are given in the data booklet in sections 1 and 2.	•	volume changes in reactions or to determine the value of the gas constant, <i>R</i> . Aim 8 : The unit parts per million, ppm, is commonly used in measuring small levels of pollutants in fluids. This unit is convenient for communicating very low concentrations, but is not a formal SI unit.		
•	Units of concentration to include: g dm ⁻³ , mol dm ⁻³ and parts per million (ppm). The use of square brackets to denote molar concentration is required.				