Calculating uncertainties (answer key)

1) Calculate the uncertainty for each of the measurements on the following equipment:
a) Electronic mass balance

Absolute uncertainty: $\pm 0.01 \mathrm{~g}$
Measurement including absolute uncertainty: $12.68 \pm 0.01 \mathrm{~g}$
$\%$ uncertainty: $(0.01 / 12.68) \times 100=0.08 \%$
b) Digital thermometer

Absolute uncertainty: $\pm 0.1^{\circ} \mathrm{C}$
Measurement including absolute uncertainty: $31.4 \pm 0.1^{\circ} \mathrm{C}$ \% uncertainty: (0.1/31.4) $\times 100=0.3 \%$
c) Digital pH meter

Absolute uncertainty: ± 0.01
Measurement including absolute uncertainty: 7.00 ± 0.01
\% uncertainty: $(0.01 / 7.00) \times 100=0.1 \%$
d) Measuring cylinder

Absolute uncertainty: $\pm 0.5 \mathrm{~cm}^{3}$
Measurement including absolute uncertainty: $43.0 \pm 0.5 \mathrm{~cm}^{3}$
\% uncertainty: $(0.5 / 43.0) \times 100=1 \%$
e) Measuring cylinder

Absolute uncertainty: $\pm 0.5 \mathrm{~cm}^{3}$
Measurement including absolute uncertainty: $63.5 \pm 0.5 \mathrm{~cm}^{3}$
\% uncertainty: $(0.5 / 63.5) \times 100=0.8 \%$
f) Burette

> Absolute uncertainty: $\pm 0.05 \mathrm{~cm}^{3}$
> Measurement including absolute uncertainty: $21.30 \pm 0.05 \mathrm{~cm}^{3}$
> \% uncertainty: $(0.05 / 21.30) \times 100=0.2 \%$
2) Propagating errors practice

A sample of aluminium is found to have a mass of $11.26 \pm 0.05 \mathrm{~g}$ and a volume of $4.31 \pm 0.01 \mathrm{~cm}^{3}$
a. Calculate the percent uncertainties in the mass and the volume:
mass: $(0.05 / 11.26) \times 100=0.4 \%$
volume: $(0.01 / 4.31) \times 100=0.2 \%$
b. What is the experimental value for the density of the aluminium? (with uncertainty)

Density $=$ mass $/$ volume
Density $=11.26 / 4.31=2.61 \mathrm{~g} \mathrm{~cm}^{-3}$
$2.61 \mathrm{~g} \mathrm{~cm}^{-3} \pm 0.6 \%$
Convert back to absolute uncertainty:
$(0.6 / 100) \times 2.61=0.01566$
$2.61 \pm 0.02 \mathrm{~g} \mathrm{~cm}^{-3}$
c. Given that the density of aluminium is $2.71 \mathrm{~g} \mathrm{~cm}^{-3}$, what is the percentage error?
$\%$ error $=((2.61-2.71) / 2.71) \times 100=-3.7 \%($ or $3.7 \%)$

