# Reactivity 1.2 HL

**IB CHEMISTRY HL** 



16 **S** Sulfur 32.065

J

6 C Carbon 12.0107

2 **He** Helium 4.002602



# **Reactivity 1.2.3 and 1.2.4**

# **Understandings:**

- Standard enthalpy changes of combustion,  $\Delta H_c$ , and enthalpy of formation,  $\Delta H_f$ , data are used in thermodynamic calculations (1.2.3).
- An application of Hess's law uses enthalpy of formation data or enthalpy of combustion data to calculate the enthalpy change (1.2.4).

### **Learning outcomes:**

- Deduce equations and solutions to problems involving these terms (1.2.3).
- Calculate enthalpy changes of a reaction using  $\Delta H_f$  data or  $\Delta H_c$  data (1.2.4).
- $\Delta H^{\Theta} = \sum \Delta H_{c}^{\Theta}$  reactants  $-\sum \Delta H_{c}^{\Theta}$  products
- $\Delta H^{e} = \sum \Delta H_{f}^{e}$  products  $-\sum \Delta H_{f}^{e}$  reactants

### Additional notes:

- Enthalpy of combustion and formation data are given in the data booklet.
- The above equations are given in the data booklet.

# **Linking questions:**

• Structure 2.2 Would you expect allotropes of an element, such as diamond and graphite, to have different Δ*H* values?

# Standard enthalpy change of formation ( $\Delta H_f^{\circ}$ )

- The standard enthalpy change of formation (ΔH<sub>f</sub><sup>e</sup>) is the enthalpy change when one mole of a substance is formed from its elements in their standard states under standard conditions.
- Standard state is the normal, most pure stable state of a substance measured at a pressure of 100 kPa.

# **Examples:**

$$C(s) + 2H_2(g) \rightarrow CH_4(g)$$
  $\Delta H_f^{\Theta} = -74.0 \text{ kJ mol}^{-1}$   $2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(I)$   $\Delta H_f^{\Theta} = -278 \text{ kJ mol}^{-1}$   $AH_f^{\Theta} = -411 \text{ kJ mol}^{-1}$   $\Delta H_f^{\Theta} = -411 \text{ kJ mol}^{-1}$ 

 Note that fractional coefficients are used because the equation is written for the formation of one mole of product.

**Exercise**: Write equations for the formation of one mole of the following compounds.

- 1.  $C_3H_8(g)$
- 2. CH<sub>3</sub>OH(I)
- **3.** MgCl<sub>2</sub>(s)

# Calculating $\Delta H$ for a reaction using $\Delta H^{\bullet}$ values

$$\Delta H^{\Theta} = \sum \Delta H_{f}^{\Theta}$$
 products  $-\sum \Delta H_{f}^{\Theta}$  reactants

- $\Delta H_{\rm f}^{\rm o}$  values can be found in table 12 of the data booklet.
- Elements have a standard enthalpy change of formation of zero.

**Exercise:** Calculate the enthalpy change for each of the reactions below, given the data in the table.

|                                    | Δ <i>H</i> <sub>f</sub> <sup>⊕</sup> (kJ mol <sup>-1</sup> ) |
|------------------------------------|--------------------------------------------------------------|
| CO <sub>2(g)</sub>                 | -394                                                         |
| CH <sub>4(g)</sub>                 | -74.9                                                        |
| $H_2O_{(g)}$                       | -241.8                                                       |
| H <sub>2</sub> O <sub>(I)</sub>    | -285.8                                                       |
| HCI <sub>(g)</sub>                 | -92.3                                                        |
| C <sub>5</sub> H <sub>12 (I)</sub> | -173                                                         |
| CCI <sub>4(I)</sub>                | -95.7                                                        |
| $NH_{3(g)}$                        | -45.9                                                        |
| NO <sub>(g)</sub>                  | +90.3                                                        |

1. 
$$C_5H_{12}(I) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(I)$$

**2.** 
$$CH_4(g) + 4CI_2(g) \rightarrow CCI_4(I) + 4HCI(g)$$

3. 
$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

# Standard enthalpy change of combustion ( $\Delta H_c^{\circ}$ )

• The standard enthalpy change of combustion ( $\Delta H_c^{\circ}$ ) is the enthalpy change when one mole of a substance is burned completely in oxygen under standard conditions.

# **Example:**

$$C_2H_5OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$$
  $\Delta H_c^{\Theta} = -1367 \text{ kJ mol}^{-1}$ 

- Note that the equation is balanced for one mole of reactant and the oxygen is assumed to be the excess reactant.
- Write an equation for the complete combustion of one mole of butane, C<sub>4</sub>H<sub>10</sub>.

$$C_4H_{10}(g) + \underline{\hspace{1cm}} O_2(g) \rightarrow \underline{\hspace{1cm}} CO_2(g) + \underline{\hspace{1cm}} H_2O(I)$$

# Calculating $\Delta H$ using $\Delta H_c^{\circ}$ values

• The equation used to calculate the  $\Delta H$  of a reaction using  $\Delta H^{\rm e}_{\rm c}$  values is given below.

$$\Delta H^{\Theta} = \sum \Delta H_{c}^{\Theta}$$
 reactants  $-\sum \Delta H_{c}^{\Theta}$  products

**Example**: Determine the  $\Delta H$  of the following reaction using the values given in the table.

$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$

|                               | Δ <i>H</i> c <sup>e</sup> |
|-------------------------------|---------------------------|
| C <sub>2</sub> H <sub>4</sub> | -1411                     |
| H <sub>2</sub>                | -286                      |
| C <sub>2</sub> H <sub>6</sub> | -1561                     |

# Reactivity 1.2.5

# **Understandings:**

• A Born–Haber cycle is an application of Hess's law, used to show energy changes in the formation of an ionic compound.

# **Learning outcomes:**

• Interpret and determine values from a Born–Haber cycle for compounds composed of univalent and divalent ions.

### Additional notes:

- The cycle includes: ionization energies, enthalpy of atomization (using sublimation and/or bond enthalpies), electron affinities, lattice enthalpy, enthalpy of formation.
- The construction of a complete Born-Haber cycle will not be assessed.

# **Linking questions:**

• Structure 2.1 What are the factors that influence the strength of lattice enthalpy in an ionic compound?

REACTIVITY 1.2 HL WWW.MSJCHEM.COM 5

### Lattice enthalpy ( $\Delta H^{e}_{lat}$ )

• Lattice enthalpy ( $\Delta H^{\rm e}_{\rm lat}$ ) is the enthalpy change when one mole of solid ionic compound is separated into its gaseous ions under standard conditions.

$$NaCl_{(s)} \rightarrow Na^{+}_{(q)} + Cl^{-}_{(q)}$$
  $\Delta H^{\bullet}_{lat} = +790 \text{ kJ mol}^{-1}$ 

- Note that ΔH<sup>P</sup><sub>lat</sub> is endothermic and has a positive ΔH.
- A Born-Haber cycle is an enthalpy cycle that can be used to calculate the lattice enthalpy or enthalpy of formation of an ionic compound.
- Enthalpy of atomisation (ΔH°<sub>atom</sub>) the enthalpy change when one mole of gaseous atoms is formed from an element in its standard state (endothermic).

$$Na(s) \rightarrow Na(g)$$
 ( $\Delta H = +107 \text{ kJ mol}^{-1}$ )

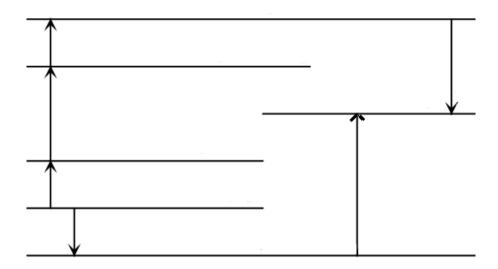
 First ionisation energy (ΔH<sub>i</sub>°) – the minimum energy required to remove one mole of electrons from one mole of gaseous atoms (endothermic)

$$Na_{(g)} \rightarrow Na^{+}_{(g)} + e^{-} (\Delta H = +496 \text{ kJ mol}^{-1})$$

 Bond dissociation enthalpy (E) – the enthalpy change when one mole of bonds is broken in the gaseous state (endothermic).

$$Cl_{2(g)} \rightarrow 2Cl_{(g)}$$
 ( $\Delta H = +242 \text{ kJ mol}^{-1}$ )

 First electron affinity (ΔH<sub>e</sub>°) – the enthalpy change when one mole of electrons are added to one mole of gaseous atoms (exothermic).


$$Cl_{(g)} + e^{-} \rightarrow Cl_{(g)} \quad (\Delta H = -349 \text{ kJ mol}^{-1})$$

 Standard enthalpy change of formation (ΔH<sub>f</sub>°) – the enthalpy change when one mole of a compound is formed from it elements in their standard states under standard conditions.

$$Na(s) + \frac{1}{2}Cl_{2(g)} \rightarrow NaCl(s)$$
 ( $\Delta H = -411 \text{ kJ mol}^{-1}$ )

# **Exercises:**

1. Using the values given above, construct a Born-Haber cycle using the template below and calculate the  $\Delta H^{\rm e}_{\rm lat}$  for NaCl.



**2.** Using the values given in the table below, construct a Born-Haber cycle and calculate the  $\Delta H_{\ell}^{\bullet}$  for CaF<sub>2</sub>

| ΔH <sub>atom</sub> Ca <sub>(s)</sub> (enthalpy of atomization)              | +179 kJ mol <sup>-1</sup>  |
|-----------------------------------------------------------------------------|----------------------------|
| EF <sub>2(g)</sub> (bond dissociation enthalpy)                             | +158 kJ mol <sup>-1</sup>  |
| $\Delta H^{\Theta_i}$ Ca <sub>(g)</sub> (1 <sup>st</sup> ionisation energy) | +590 kJ mol <sup>-1</sup>  |
| $\Delta H^{\Theta_i} Ca^+_{(g)}$ (2 <sup>nd</sup> ionisation energy)        | +1150 kJ mol <sup>-1</sup> |
| $\Delta H^{\Theta}_{e}$ $F_{(g)}$ (first electron affinity)                 | -328 kJ mol <sup>-1</sup>  |
| $\Delta H_{lat}$ CaF <sub>2(s)</sub> (lattice enthalpy)                     | +2651 kJ mol <sup>-1</sup> |