# Reactivity 1.2 HL Answers

# **IB CHEMISTRY HL**













# Reactivity 1.2.3 and 1.2.4

# Understandings:

- Standard enthalpy changes of combustion,  $\Delta H_c$ , and enthalpy of formation,  $\Delta H_f$ , data are used in thermodynamic calculations (1.2.3).
- An application of Hess's law uses enthalpy of formation data or enthalpy of combustion data to calculate the enthalpy change (1.2.4).

#### Learning outcomes:

- Deduce equations and solutions to problems involving these terms (1.2.3).
- Calculate enthalpy changes of a reaction using  $\Delta H_{\rm f}$  data or  $\Delta H_{\rm c}$  data (1.2.4).
- $\Delta H^{\Theta} = \sum \Delta H_{c}^{\Theta}$  reactants  $-\sum \Delta H_{c}^{\Theta}$  products
- $\Delta H^{\Theta} = \sum \Delta H^{\Theta}$  products  $-\sum \Delta H^{\Theta}$  reactants

# Additional notes:

- Enthalpy of combustion and formation data are given in the data booklet.
- The above equations are given in the data booklet.

# Linking questions:

• Structure 2.2 Would you expect allotropes of an element, such as diamond and graphite, to have different  $\Delta H$  values?

#### Standard enthalpy change of formation ( $\Delta H_{f}^{\circ}$ )

- The standard enthalpy change of formation (ΔH<sub>f</sub><sup>e</sup>) is the enthalpy change when one mole of a substance is formed from its elements in their standard states under standard conditions.
- Standard state is the normal, most pure stable state of a substance measured at a pressure of 100 kPa.

#### Examples:

C(s) + 2H<sub>2</sub>(g) → CH<sub>4</sub>(g) 2C(s) + 3H<sub>2</sub>(g) +  $\frac{1}{2}O_2(g) \rightarrow C_2H_5OH(I)$  ΔH<sub>f</sub><sup>Θ</sup> = -278 kJ mol<sup>-1</sup> Na(s) +  $\frac{1}{2}Cl_2(g) \rightarrow NaCl(s)$  ΔH<sub>f</sub><sup>Θ</sup> = -411 kJ mol<sup>-1</sup>

• Note that fractional coefficients are used because the equation is written for the formation of one mole of product.

**Exercise**: Write equations for the formation of one mole of the following compounds.

- **1.**  $C_3H_8(g)$  **3C**(graphite) +  $4H_2(g) \rightarrow C_3H_8(g)$
- 2. CH<sub>3</sub>OH(I) C<sub>(graphite)</sub> + 2H<sub>2</sub>(g) +  $\frac{1}{2}O_2(g) \rightarrow CH_3OH(I)$
- **3.** MgCl<sub>2</sub>(s) Mg(s) + Cl<sub>2</sub>(g)  $\rightarrow$  MgCl<sub>2</sub>(s)

#### Calculating $\Delta H$ for a reaction using $\Delta H_{f}^{e}$ values

 $\Delta H^{e} = \sum \Delta H^{e}_{f^{e} \text{ products}} - \sum \Delta H^{e}_{f^{e} \text{ reactants}}$ 

- $\Delta H_{\rm f}^{\rm o}$  values can be found in table 12 of the data booklet.
- Elements have a standard enthalpy change of formation of zero.

**Exercise:** Calculate the enthalpy change for each of the reactions below, given the data in the table.

|                                 | Δ <i>H</i> f <sup>e</sup> (kJ mol⁻¹) |  |
|---------------------------------|--------------------------------------|--|
| CO <sub>2(g)</sub>              | -394                                 |  |
| CH <sub>4(g)</sub>              | -74.9                                |  |
| $H_2O(g)$                       | -241.8                               |  |
| H <sub>2</sub> O <sub>(I)</sub> | -285.8                               |  |
| HCI <sub>(g)</sub>              | -92.3                                |  |
| C5H12 (I)                       | -173                                 |  |
| CCI <sub>4(I)</sub>             | -95.7                                |  |
| NH <sub>3(g)</sub>              | -45.9                                |  |
| NO <sub>(g)</sub>               | +90.3                                |  |

**1.**  $C_5H_{12}(I) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(I)$ 

 $\Delta H = [(5 \times -394) + (6 \times -286)] - (-173) = -3513 \text{ kJ mol}^{-1}$ 

2. CH<sub>4</sub>(g) + 4Cl<sub>2</sub>(g) → CCl<sub>4</sub>(l) + 4HCl(g)  $\Delta H = [(4 \times -92.3) + (-95.7)] - [(-74.9)] = -390 \text{ kJ mol}^{-1}$ 

3.  $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$  $\Delta H = [(6 \times -241.8) + (4 \times + 90.3)] - [(4 \times -45.9)] = -906 \text{ kJ mol}^{-1}$ 

#### Standard enthalpy change of combustion ( $\Delta H_c^{o}$ )

 The standard enthalpy change of combustion (ΔH<sub>c</sub><sup>e</sup>) is the enthalpy change when one mole of a substance is burned completely in oxygen under standard conditions.

#### Example:

 $C_2H_5OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I) \qquad \Delta H_c{}^{\rm e} = -1367 \ kJ \ mol^{-1}$ 

- Note that the equation is balanced for one mole of reactant and the oxygen is assumed to be the excess reactant.
- Write an equation for the complete combustion of one mole of butane, C<sub>4</sub>H<sub>10</sub>.

$$C_4H_{10}(g) + \frac{61}{2}O_2(g) \rightarrow 4CO_2(g) + \frac{5}{2}H_2O(I)$$

WWW.MSJCHEM.COM

## Calculating $\Delta H$ using $\Delta H_c^{e}$ values

• The equation used to calculate the  $\Delta H$  of a reaction using  $\Delta H^{e_{c}}$  values is given below.

 $\Delta H^{e} = \sum \Delta H_{c}^{e} \text{ reactants} - \sum \Delta H_{c}^{e} \text{ products}$ 

**Example**: Determine the  $\Delta H$  of the following reaction using the values given in the table.

 $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$ 

|                               | ΔH <sub>c</sub> e |
|-------------------------------|-------------------|
| C <sub>2</sub> H <sub>4</sub> | -1411             |
| H <sub>2</sub>                | -286              |
| $C_2H_6$                      | -1561             |

 $\Delta H^{\rm e} = (-1411 + -286) - (-1561)$  $\Delta H^{\rm e} = -136 \text{ kJ mol}^{-1}$ 

# Reactivity 1.2.5

#### **Understandings:**

• A Born–Haber cycle is an application of Hess's law, used to show energy changes in the formation of an ionic compound.

# Learning outcomes:

• Interpret and determine values from a Born–Haber cycle for compounds composed of univalent and divalent ions.

#### Additional notes:

- The cycle includes: ionization energies, enthalpy of atomization (using sublimation and/or bond enthalpies), electron affinities, lattice enthalpy, enthalpy of formation.
- The construction of a complete Born–Haber cycle will not be assessed.

# Linking questions:

• Structure 2.1 What are the factors that influence the strength of lattice enthalpy in an ionic compound?

#### Lattice enthalpy ( $\Delta H^{o}_{lat}$ )

• Lattice enthalpy ( $\Delta H^{e}_{lat}$ ) is the enthalpy change when one mole of solid ionic compound is separated into its gaseous ions under standard conditions.

 $NaCl_{(s)} \rightarrow Na^{+}_{(g)} + Cl^{-}_{(g)} \Delta H^{e}_{lat} = +790 \text{ kJ mol}^{-1}$ 

- Note that  $\Delta H^{e}_{lat}$  is endothermic and has a positive  $\Delta H$ .
- A Born-Haber cycle is an enthalpy cycle that can be used to calculate the lattice enthalpy or enthalpy of formation of an ionic compound.
- Enthalpy of atomisation (ΔH<sup>o</sup><sub>atom</sub>) the enthalpy change when one mole of gaseous atoms is formed from an element in its standard state (endothermic).

 $Na_{(s)} \rightarrow Na_{(g)}$  ( $\Delta H = +107 \text{ kJ mol}^{-1}$ )

 First ionisation energy (ΔHi<sup>e</sup>) – the minimum energy required to remove one mole of electrons from one mole of gaseous atoms (endothermic)

 $Na_{(g)} \rightarrow Na^{+}_{(g)} + e^{-} (\Delta H = +496 \text{ kJ mol}^{-1})$ 

• Bond dissociation enthalpy (E) – the enthalpy change when one mole of bonds is broken in the gaseous state (endothermic).

 $Cl_{2(g)} \rightarrow 2Cl_{(g)}$  ( $\Delta H = +242 \text{ kJ mol}^{-1}$ )

 First electron affinity (ΔHe<sup>o</sup>) – the enthalpy change when one mole of electrons are added to one mole of gaseous atoms (exothermic).

 $CI_{(g)} + e^{-} \rightarrow CI^{-}_{(g)}$  ( $\Delta H = -349 \text{ kJ mol}^{-1}$ )

• Standard enthalpy change of formation ( $\Delta H_{f}^{e}$ ) – the enthalpy change when one mole of a compound is formed from it elements in their standard states under standard conditions.

$$Na_{(s)} + \frac{1}{2}Cl_{2(g)} \rightarrow NaCl_{(s)}$$
 ( $\Delta H = -411 \text{ kJ mol}^{-1}$ )

#### **Exercises:**

1. Using the values given above, construct a Born-Haber cycle using the template below and calculate the  $\Delta H^{e}_{lat}$  for NaCl.



$$\begin{split} \Delta H^{\Theta}_{lat} &= \Delta H^{\Theta}_{atom} \, \text{Na}_{(s)} + \Delta H^{\Theta}_{i} \, \text{Na}_{(g)} + \frac{1}{2} \, E \, \text{Cl}_{2(g)} + \Delta H^{\Theta}_{e} \, \text{Cl}_{(g)} - \Delta H^{\Theta}_{f} \, \text{NaCl} \\ \Delta H^{\Theta}_{lat} &= (+107) + (+496) + (+121) + (-349) - (-411) \\ \Delta H^{\Theta}_{lat} &= +786 \text{ kJ mol}^{-1} \end{split}$$

2. Using the values given in the table below, construct a Born-Haber cycle and calculate the  $\Delta H_{l}^{e}$  for CaF<sub>2</sub>

| $\Delta H_{\text{atom}} \operatorname{Ca}_{(s)}$ (enthalpy of atomization)            | +179 kJ mol <sup>-1</sup>  |
|---------------------------------------------------------------------------------------|----------------------------|
| $E F_{2(g)}$ (bond dissociation enthalpy)                                             | +158 kJ mol <sup>-1</sup>  |
| $\Delta H^{\Theta_i} \operatorname{Ca}_{(g)} (1^{st} \text{ ionisation energy})$      | +590 kJ mol⁻¹              |
| $\Delta H^{\Theta_i} \operatorname{Ca}^{+}_{(g)}$ (2 <sup>nd</sup> ionisation energy) | +1150 kJ mol <sup>−1</sup> |
| $\Delta H^{\Theta}_{e} F_{(g)}$ (first electron affinity)                             | –328 kJ mol <sup>–1</sup>  |
| $\Delta H_{lat} \operatorname{CaF}_{2(s)}$ (lattice enthalpy)                         | +2651 kJ mol <sup>-1</sup> |



$$\begin{split} \Delta H^{\Theta}{}_{f} &= \Delta H^{\Theta}{}_{atom} \operatorname{Ca}_{(s)} + \Delta H^{\Theta}{}_{i} \operatorname{Ca}_{(g)} + \Delta H^{\Theta}{}_{i} \operatorname{Ca}^{+}{}_{(g)} + E \operatorname{F}_{2(g)} + 2(\Delta H^{\Theta}{}_{e} \operatorname{F}_{(g)}) - \Delta H^{\Theta}{}_{lat} \operatorname{Ca}{}_{F_{2(s)}} \\ \Delta H^{\Theta}{}_{f} &= (+179) + (+590) + (+1150) + (+158) + 2(-328) - (+2651) \\ \Delta H^{\Theta}{}_{f} &= -1230 \text{ kJ mol}{}^{-1} \end{split}$$