MSJChem Tườnas for IB Chemistry

Reactivity 1.2

MSJChem Tườnas for IB Chemistry

Calculating AH using average bond enthalpies

MSJChem Tutorials for IB Chemistry AVERAGE DONC Enthalpies Average bond enthalpy is the energy required to break one mole of bonds in a gaseous molecule averaged over similar compounds. Bond breaking is endothermic – energy is required to break a bond. **Bond formation is exothermic – energy is released** when bonds are formed.

$\Delta H = \sum (bonds broken) - \sum (bonds formed)$

11. Bond enthalpies and average bond enthalpies at 298 K

Single bonds (kJ mol⁻¹)

	Br	С	Cl	F	Н	Ι	N	0	Р	S	Si
Br	193	285	219	249	366	178		201	264	218	330
С	285	346	324	492	414	228	286	358	264	289	307
Cl	219	324	242	255	431	211	192	206	322	271	400
F	249	492	255	159	567	280	278	191	490	327	597
Н	366	414	431	567	436	298	391	463	322	364	323
Ι	178	228	211	280	298	151		201	184		234
Ν		286	192	278	391		158	214			
0	201	358	206	191	463	201	214	144	363		466
Р	264	264	322	490	322	184		363	198		
S	218	289	271	327	364					266	293
Si	330	307	400	597	323	234		466		293	226

Multiple bonds (kJ mol⁻¹)

C=C 614	C≡N 890	N≡N 945
C≡C 839	C=O 804	N=O 587
C=C 507 (in benzene)	C=S 536	O=O 498
C=N 615	N=N 470	S=S 429

MSJChem Tutorials for IB Chemistr		e bond er	nthalpies		
C ₃ H ₈	_(g) + 5O _{2(g)} →	→ 3CO _{2(g)} + 4	H ₂ O(I)		
H H H H - C - C - C - H H H H H H H	0=0 0=0 + 0=0 0=0 0=0	 → 0=C=0 + 0=C=0 + 0=C=0 	н ^{_0} [_] н н ^{_0} [_] н н ^{_0} [_] н н ^{_0} [_] н		
2 × 346 kJ 8 × 414 kJ	5 × 498 kJ	6 × 804 kJ	8 × 463 kJ		
4004 kJ	2490 kJ	4824 kJ	3704 kJ		
$\Delta H = 6494 - 8528 = -2034 \text{ kJ mol}^{-1}$					

MSJChem Tutorials for IB Chemistry AVERAGE DONC Enthalpies

Enthalpy changes calculated using average bond enthalpies are often different to the actual value.

Substance	Formula	State	∆ <i>H</i> [⇔] _c (kJ mol ⁻¹)
propane	C ₃ H ₈	g	-2219

Average bond enthalpies are calculated by calculating the energy required to break the same bond in similar compounds and then averaging the value – the actual bond enthalpy value may be different.

MSJChem Tutorials for IB Chemistry

Calculating $\triangle \mathcal{H}$ of a reaction that is the sum of multiple reactions with known $\triangle \mathcal{H}$ values

The standard enthalpy changes of three combustion reactions are given below in kJ.

$$\begin{aligned} 2C_{2}H_{6(g)} + 7O_{2(g)} &\to 4CO_{2(g)} + 6H_{2}O_{(l)} \\ 2H_{2(g)} + O_{2(g)} &\to 2H_{2}O_{(l)} \\ C_{2}H_{4(g)} + 3O_{2(g)} &\to 2CO_{2(g)} + 2H_{2}O_{(l)} \end{aligned} \qquad \Delta H^{\Theta} = -3120 \\ \Delta H^{\Theta} = -572 \\ \Delta H^{\Theta} = -1411 \end{aligned}$$

Calculate the ΔH for the following reaction:

$$C_2H_{6(g)} \rightarrow C_2H_{4(g)} + H_{2(g)}$$

Hess's Jaw

 $2C_2H_{6(g)} + 7O_{2(g)} \rightarrow 4CO_{2(g)} + 6H_2O_{(l)}\Delta H^{\Theta} = -3120$

$C_2H_{6(g)} + 3\frac{1}{2}O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(l)} \Delta H^{\Theta} = -1560$

MSJChem

MSJChem Tutorials for IB Chemistry

$$\begin{array}{l} 2C_{2}H_{6(g)}+7O_{2(g)}\rightarrow 4CO_{2(g)}+6H_{2}O_{(1)}\Delta H^{\Theta}=-3120\\ 2H_{2(g)}+O_{2(g)}\rightarrow 2H_{2}O_{(1)} & \Delta H^{\Theta}=-572\\ \hline C_{2}H_{4(g)}+3O_{2(g)}\rightarrow 2CO_{2(g)}+2H_{2}O_{(1)} & \Delta H^{\Theta}=-1411\\ \hline C_{2}H_{6(g)}+3\frac{1}{2}O_{2(g)}\rightarrow 2CO_{2(g)}+3H_{2}O_{(1)} & \Delta H^{\Theta}=-1560\\ \hline H_{2}O_{(1)}\rightarrow H_{2(g)}+\frac{1}{2}O_{2(g)} & \Delta H^{\Theta}=+286\\ \hline 2CO_{2(g)}+2H_{2}O_{(1)}\rightarrow C_{2}H_{4(g)}+3O_{2(g)} & \Delta H^{\Theta}=+1411\\ \hline C_{2}H_{6(g)}\rightarrow C_{2}H_{4(g)}+H_{2(g)} & \Delta H^{\Theta}=+137 \text{ kJ} \end{array}$$