Reactivity 1.4 HL

IB CHEMISTRY HL

Reactivity 1.4.1

Understandings:

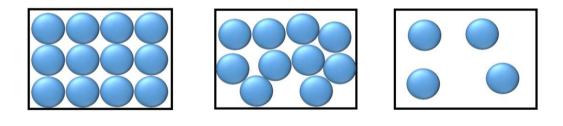
- Entropy, *S*, is a measure of the dispersal or distribution of matter and/or energy in a system. The more ways the energy can be distributed, the higher the entropy.
- Under the same conditions, the entropy of a gas is greater than that of a liquid, which in turn is greater than that of a solid.

Learning outcomes:

- Predict whether a physical or chemical change will result in an increase or decrease in entropy of a system.
- Calculate standard entropy changes, ΔS^{\ominus} , from standard entropy values, S.

Additional notes:

• Standard entropy values are given in the data booklet.


Linking questions:

• Structure 1.1 Why is the entropy of a perfect crystal at 0 K predicted to be zero?

Entropy (S)

- Entropy (S) refers to the distribution of available energy among the particles in a system.
- The more ways energy can be distributed, the greater the entropy.
- Gases have a higher entropy than liquids which have a higher entropy than solids.
- The table below has absolute entropy values for ice, liquid water and steam.
- The entropy increases from H₂O(s) to H₂O(g).

State of matter	Absolute entropy (S [⊖]) J K ⁻¹ mol ⁻¹
H ₂ O(s)	41.3
H ₂ O(I)	70.0
H ₂ O(g)	188

Increasing entropy

Predicting entropy changes

Factors that can change the entropy of a system include:

- changes in temperature
- changes of state (freezing, evaporating)
- dissolving (or crystallisation)
- changes in the amounts of gaseous reactants or products

Factors that increase entropy (positive entropy change, $+\Delta S$)

Dissolving	NaCl(s) → Na⁺(aq) Cl⁻(aq)
Increase in mol of gas	$\begin{split} & CaCO_3(s) \! \rightarrow CaO(s) + CO_2(g) \\ & C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g) \\ & CH_4(g) + H_2O(g) \rightarrow 3H_2(g) + CO(g) \end{split}$
Changes of state (melting, evaporation / boiling / vaporisation, sublimation)	$H_2O(s) \to H_2O(l)$

Factors that decrease entropy (negative entropy change, $-\Delta S$)

Crystallisation	Na⁺(aq) Cl⁻(aq) → NaCl(s)		
Decrease in mol of gas	$\begin{split} N_2(g) + 3H_2(g) &\rightleftharpoons 2NH_3(g) \\ C_2H_4(g) + H_2(g) \to C_2H_6(g) \\ 2Mg(s) + O_2(g) \to 2MgO(s) \end{split}$		
Changes of state (freezing, condensation, deposition)	$H_2O(g) \rightarrow H_2O(I)$		

Exercise: Predict the entropy change in the following examples, giving a reason for your choice.

- **1.** $Br_2(I) \rightarrow Br_2(g)$
- **2.** $Na_2CO_3(s) + 2HCI(aq) \rightarrow CO_2(g) + 2NaCI(aq) + H_2O(I)$
- **3.** AgNO₃(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO₃(aq)
- 4. $NH_3(g) + HCI(g) \rightarrow NH_4CI(s)$

Standard entropy change (ΔS^{\ominus})

The standard entropy change of reaction (ΔS[⊕]) can be calculated using the equation:

$$\Delta S \ominus = \Sigma S \ominus_{\text{products}} - \Sigma S \ominus_{\text{reactants}}$$

- A perfectly ordered crystal at zero kelvin has an entropy of zero.
- Absolute entropy values are always positive.

Example: Calculate the entropy change for this reaction:

$$N_2H_4(I) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

Substance	S⊖ (J K⁻¹ mol⁻¹)
H ₂ O(g)	188
O ₂ (g)	205
N ₂ (g)	192
N ₂ H _{4(I)}	121

Exercises: Use the data in the table to answer the following questions.

Substance	S⊖ (J K ⁻¹ mol ⁻¹)	Substance	S⊖ (J K ⁻¹ mol ⁻¹)
H ₂ O(g)	189	CO ₂ (g)	214
H ₂ O(I)	70	C ₃ H ₈ (g)	270
H ₂ (g)	131	O ₂ (g)	205
Cl ₂ (g)	223		
HCI(g)	187		

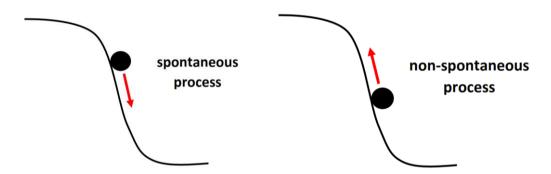
1. Predict the sign of ΔS^{\ominus} for the following reactions and explain your reasoning.

(a) $H_2O(g) \rightarrow H_2O(I)$

(b) $H_2(g)$ + $Cl_2(g) \rightarrow 2HCl(g)$

(c) $C_3H_8(g)$ + $5O_2(g) \rightarrow 3CO_2(g)$ + $4H_2O(g)$

2. Calculate ΔS^{\ominus} for the above reactions.


(a)
$$H_2O(g) \rightarrow H_2O(I)$$

(b) $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$

(c) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$

Spontaneity

• A spontaneous process is a process that occurs without adding energy (other than the energy required to overcome the energy barrier).

• According to the second law of thermodynamics, for a spontaneous process the change in entropy of the universe (ΔS_{total}) must be positive.

 $\Delta S_{\text{(total)}} = \Delta S_{\text{(system)}} + \Delta S_{\text{(surroundings)}}$

• For a spontaneous reaction $\Delta S_{(total)} > 0$.

Reactivity 1.4.2 and 1.4.3

Understandings:

- Change in Gibbs energy, ΔG , relates the energy that can be obtained from a chemical reaction to the change in enthalpy, ΔH , change in entropy, ΔS , and absolute temperature, T (1.4.2).
- At constant pressure, a change is spontaneous if the change in Gibbs energy, ΔG, is negative (1.4.2).
- Interpret the sign of ΔG calculated from thermodynamic data (1.4.3).
- Determine the temperature at which a reaction becomes spontaneous (1.4.3).

Learning outcomes:

- Apply the equation $\Delta G \ominus = \Delta H \ominus T \Delta S \ominus$ to calculate unknown values of these terms (1.4.2).
- ΔG takes into account the direct entropy change resulting from the transformation of the chemicals and the indirect entropy change of the surroundings resulting from the transfer of heat energy (1.4.3).

Additional notes:

- Thermodynamic data values are given in the data booklet.
- Note the units: $\Delta H \text{ kJ mol}^{-1}$; $\Delta S \text{ J K}^{-1} \text{ mol}^{-1}$; $\Delta G \text{ kJ mol}^{-1}$.

Linking questions:

• Reactivity 3.2 How can electrochemical data also be used to predict the spontaneity of a reaction?

Gibbs free energy

- Gibbs free energy is the energy associated with a chemical reaction that can be used to do work.
- The Gibbs free energy change, ΔG , is negative for a spontaneous process and positive for a non-spontaneous process.
- The Δ*G* can be calculated using the following equation that is given in section one of the IB chemistry data booklet.

$$\Delta G \ominus = \Delta H \ominus - \mathsf{T} \Delta S \ominus$$

 ΔG^{\ominus} – standard Gibbs free energy change (kJ mol⁻¹) ΔH^{\ominus} – change in enthalpy (kJ mol⁻¹) T – temperature in kelvin, K ΔS^{\ominus} – change in entropy (J K⁻¹ mol⁻¹)

Example: Calculate the ΔG , in kJ mol⁻¹, for this reaction at 500 K, using the data in the table. State and explain if the reaction is spontaneous at this temperature.

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

Compound	Δ <i>H</i> f [⊖] (kJ mol⁻¹)	S⊖ (J K ⁻¹ mol ⁻¹)
CaCO ₃ (s)	-1207	92.9
CaO(s)	-635	39.7
CO ₂ (g)	-394	214

Determine the temperature at which the reaction will be spontaneous.

Exercises:

1. A reaction has a standard enthalpy change, ΔH^{\ominus} , of +10.00 kJ mol⁻¹ at 298 K. The standard entropy change, ΔS^{\ominus} , for the same reaction is +10.00 J K⁻¹ mol⁻¹. Calculate the value of ΔG^{\ominus} for the reaction in kJ mol⁻¹.

2. Consider the following reaction.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \quad \Delta H = -92.4 \text{ kJ mol}^{-1}$

(a) The absolute entropy values, *S*, at 298 K for N₂(g), H₂(g) and NH₃(g) are 192, 131 and 193 J K⁻¹ mol⁻¹ respectively. Calculate the ΔS^{\ominus} for the reaction and explain the sign of ΔS^{\ominus} .

(b) Calculate $\Delta G \ominus$ for the reaction at 298 K. State and explain whether the reaction is spontaneous.

Standard change in Gibbs free energy ($\Delta G \ominus$)

• The standard change in Gibbs free energy (ΔG^{\ominus}) is the change in Gibbs free energy measured under standard conditions (298 K and 100 kPa).

 $\Delta G \ominus = \Sigma \Delta G_{\rm f} \ominus_{\rm products} - \Sigma \Delta G_{\rm f} \ominus_{\rm reactants}$

 ΔG_fΘ – the standard Gibbs free energy of formation is the change in Gibbs free energy when one mole of a compound is formed from its elements in their standard states under standard conditions (100 kPa and 298 K).

Example: Calculate the ΔG^{\ominus} for the following reaction. State and explain if the reaction is spontaneous at 298 K.

Compound	Δ <i>G_f</i> ⊖ (kJ mol ⁻¹)
C ₂ H ₅ OH(I)	-175
CO ₂ (g)	-394
H ₂ O(g)	-229

 $C_2H_5OH(I)+3O_2(g)\rightarrow 2CO_2(g)+3H_2O(g)$

The effect of ΔH , ΔS and T on the spontaneity of a chemical reaction

Exothermic reactions

ΔΗ	ΔS	Т	ΔG	spontaneity
negative	positive	any		
< 0	> 0	temperature		

- ΔH is negative and ΔS is positive, therefore ΔG will be negative at any temperature.
- An exothermic reaction with an increase in entropy will be spontaneous at any temperature.

ΔΗ	ΔS	Т	ΔG	spontaneity
negative	negative	high		
< 0	< 0			

ΔΗ	ΔS	Т	ΔG	spontaneity
negative	negative	low		
< 0	< 0			

• ΔG will be negative only at low temperatures; at high T, (T ΔS) makes ΔG positive.

Endothermic reactions

ΔΗ	ΔS	Т	ΔG	spontaneity
positive	negative	any		
> 0	0 <	temperature		

- ΔH is positive and ΔS is negative, therefore ΔG will be positive at any temperature.
- An endothermic reaction with a decrease in entropy will be non-spontaneous at any temperature.

ΔΗ	ΔS	Т	ΔG	spontaneity
positive	positive	high		
> 0	> 0			

ΔΗ	ΔS	Т	ΔG	spontaneity
positive	positive	low		
> 0	> 0			

• ΔG will be negative only at high temperatures (T $\Delta S > \Delta H$); at low temperatures $\Delta H > T\Delta S$ (+ ΔG).

Summary:

Δ	S	
$\Delta H < 0 \Delta S > 0$	$\Delta H > 0 \Delta S > 0$	
Spontaneous at any temperature	Spontaneous at high temperatures	- <i>\</i> H
Δ <i>H</i> < 0 Δ <i>S</i> < 0 Spontaneous at low temperatures	Δ <i>H</i> > 0 ΔS < 0 Non-spontaneous at any temperature	- 47

Exercise: Determine the spontaneity of the following reactions, giving a reason for your answer.

1. $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(g)$

 $\Delta H < 0 \quad \Delta S > 0$

2. Na(s) + Cl₂(g) \rightarrow 2NaCl(s)

 $\Delta H < 0 \quad \Delta S < 0$

3. $2N_2O(g) + O_2(g) \rightarrow 4NO(g)$

 $\Delta H \! > \! 0 \quad \Delta S \! > \! 0$

Reactivity 1.4.4

Understandings:

• As a reaction approaches equilibrium, ΔG becomes less negative and finally reaches zero.

Learning outcomes:

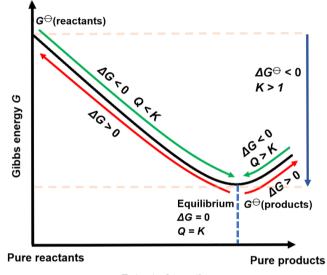
• Perform calculations using the equation $\Delta G = \Delta G \oplus + RT \ln Q$ and its application to a system at equilibrium $\Delta G \oplus = -RT \ln K$.

Additional notes:

• The equations are given in the data booklet.

Linking questions:

• Reactivity 2.3 What is the likely composition of an equilibrium mixture when Δ*G*⊖ is positive?

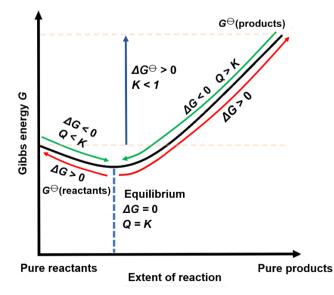

Gibbs free energy and equilibrium

- A system not at equilibrium (where $Q \neq K$) will proceed spontaneously in the direction necessary to reach equilibrium (where Q = K).
- As a reaction approaches equilibrium, the Gibbs free energy change, ΔG , becomes less negative and eventually reaches zero at equilibrium.
- The equilibrium position occurs where the free energy is at its minimum and entropy is at its maximum.

Plots of free energy against extent of reaction

- The reaction proceeds spontaneously from either pure reactants or pure products to the equilibrium position where $\Delta G = 0$ and Q = K (shown by the green arrows).
- The reaction away from the equilibrium position is non-spontaneous (shown by the red arrows).

Spontaneous reaction



For a spontaneous reaction, the equilibrium position lies further towards pure products meaning that at equilibrium [products] > [reactants] and K > 1. G^{\ominus} (products) < G^{\ominus} (reactants) so

 $\Delta G^{\ominus} < 0$ (spontaneous).

Extent of reaction

Non-spontaneous reaction

For a non-spontaneous reaction, the equilibrium position lies further towards pure reactants meaning that at equilibrium [reactants] > [products] and K < 1.

 $G^{\ominus}(\text{products}) > G^{\ominus}(\text{reactants})$ so $\Delta G^{\ominus} > 0$ (non-spontaneous).

REACTIVITY 1.4 HL

ΔG at equilibrium

$$\Delta G^{\ominus} = -RT \ln K$$
$$\Delta G = \Delta G^{\ominus} + RT \ln Q$$
$$\Delta G = -RT \ln K + RT \ln Q$$
$$\Delta G = RT \ln \frac{Q}{K}$$

• At equilibrium Q = K, therefore $\frac{Q}{K} = 1$

$$\Delta G = R T \ln(1)$$
$$\Delta G = 0$$

• At equilibrium $\Delta G = 0$, but ΔG^{\ominus} is not necessarily zero unless K = 1.

Calculating ΔG for a reaction under non-standard conditions

• The ΔG for a reaction under non-standard conditions can be calculated using the equation shown which is given in section one of the IB chemistry data booklet.

$$\Delta G = \Delta G \ominus + R \mathsf{T} \ln Q$$

- ΔG^{\ominus} is the Gibbs free energy change under standard conditions.
- ΔG is the Gibbs free energy change under non-standard conditions.
- Q is the reaction quotient.

Exercise: A reaction has a ΔG^{\ominus} value of -142 kJ mol⁻¹ and a Q value of 452. Calculate the ΔG for the reaction at 1455 K. Comment on the spontaneity of the reaction at this temperature and in which direction the reaction will proceed to reach equilibrium.

ΔG , Q versus K and direction of reaction

- If a system is not at equilibrium, ΔG and Q can be used to tell us in which direction the reaction will proceed to reach equilibrium.
- For a spontaneous reaction, ΔG is negative, Q < K and the reaction will proceed in the forward direction until equilibrium is reached.
- For a non-spontaneous reaction, ΔG is positive, Q > K and the reaction will proceed in the reverse direction until equilibrium is reached.

Summary:

	ΔG	Q versus K	Direction of reaction
Spontaneous reaction	ΔG < 0	Q < K	Reaction proceeds to right
Non-spontaneous reaction	$\Delta G > 0$	Q > K	Reaction proceeds to left
Reaction at equilibrium	$\Delta G = 0$	Q = K	No change

Relationship between $\Delta G \ominus$ and K

- The relationship between ΔG^{\ominus} and *K* is given by the following equation which can be found in section one of the IB chemistry data booklet.
- In this equation, temperature is in kelvin and ΔG^{\ominus} in J mol⁻¹.
- *R* is the universal gas constant, 8.31 J K⁻¹ mol⁻¹.

• This equation can be rearranged to solve for *K*.

$$K = e^{-\frac{\Delta G}{RT}}$$

Exercises:

- **1.** Calculate the value of *K* at 298 K for a reaction given that $\Delta G^{\ominus} = -33.0$ kJ mol⁻¹
- **2.** Calculate the ΔG^{\ominus} for a reaction given that the *K* is 45.6 at 298 K.

Reaction	ΔG [⊖] (kJ mol⁻¹)	K
$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$	+141.7	1.4×10 ⁻²⁵
H₂O(I) ≓ H⁺(aq) + OH⁻(aq)	+79.9	1.0×10 ⁻¹⁴
N₂(g) + 3H₂(g) ⇔ 2NH₃(g)	-32.9	5.8×10 ⁵
$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu_{(s)}$	-211	1.4×10 ³⁷

• The table below shows values of the ΔG^{\ominus} and *K* for some chemical reactions.

- Reactions that have a more positive ΔG^{\ominus} have a smaller *K* and reactions that have a more negative ΔG^{\ominus} have a larger *K*.
- For a spontaneous reaction, K>1 and the equilibrium mixture will contain a higher concentration of products.
- For a non-spontaneous reaction, K < 1 and the equilibrium mixture will contain a higher concentration of reactants.

Summary:

Gibbs free energy change (Δ <i>G</i> ⊖)	Equilibrium constant, <i>K</i>	Composition of equilibrium mixture
< 0 (negative)	> 1	Higher concentration of products
> 0 (positive)	< 1	Higher concentration of reactants
0	1	Neither reactants nor products favoured