Reactivity 2.1

IB CHEMISTRY SL

M	${ }_{\substack{\text { s.un } \\ \text { nutu }}}^{16}$	J	$\underbrace{6}_{\substack{\text { cuta } \\ \text { catad }}}$	$\stackrel{2}{\mathrm{He}}^{2}$	N

Reactivity 2.1.1 and 2.1.2

Understandings:

- Chemical equations show the ratio of reactants and products in a reaction (2.1.1).
- The mole ratio of an equation can be used to determine:
the masses and/or volumes of reactants and products
the concentrations of reactants and products for reactions occurring in solution (2.1.2).

Learning outcomes:

- Deduce chemical equations when reactants and products are specified (2.1.1).
- Calculate reacting masses and/or volumes and concentrations of reactants and products (2.1.2).

Additional notes:

- Include the use of state symbols in chemical equations.
- Avogadro's law and definitions of molar concentration are covered in Structure 1.4.
- The values for A_{r} given in the data booklet to two decimal places should be used in calculations.

Linking questions:

- Reactivity 3.2 When is it useful to use half- equations?
- Structure 1.5 How does the molar volume of a gas vary with changes in temperature and pressure?

Balancing chemical equations

- The law of the conservation of mass states that mass is conserved in a chemical reaction.
- Therefore, there must be the same number of each type of atom in the reactants and products, as shown below.

- To balance a chemical equation, we can only change the numbers in front of the reactants or products which are called coefficients.

Example 1:

- Sodium reacts with chlorine to produce sodium chloride. The unbalanced equation is shown.

$$
\ldots . . \mathrm{Na}(\mathrm{~s})+\ldots . . \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \ldots . . \mathrm{NaCl}(\mathrm{~s})
$$

There is one Na atom in the reactants and one in the products. However, there are two Cl atoms in the reactants but only one in the products. Write the balanced equation for the reaction.

Example 2:

- Calcium carbonate reacts with hydrochloric acid to produce calcium chloride, water and carbon dioxide. The unbalanced equation is shown.
$\ldots . . \mathrm{CaCO}_{3}(\mathrm{~s})+\ldots . . \mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots . . \mathrm{CaCl}_{2}(\mathrm{aq})+\ldots . . \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\ldots . . \mathrm{CO}_{2}(\mathrm{~g})$
Write the balanced equation for the reaction.

Exercises: Balance the following chemical equations using whole number coefficients. When each equation is balanced, determine the sum of coefficients in the equations.

1) $\ldots . . \mathrm{CH}_{4}(\mathrm{~g})+\ldots . . \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots . . \mathrm{CO}_{2}(\mathrm{~g})+\ldots . . \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ sum of coefficients........
2) $\ldots . . \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\ldots . . \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots . . \mathrm{CO}_{2}(\mathrm{~g})+\ldots . . \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ sum of coefficients........
3) $\ldots . . \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\ldots . . \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots . \mathrm{CO}_{2}(\mathrm{~g})+\ldots . . \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ sum of coefficients
4) $\ldots . . \mathrm{Mg}(\mathrm{s})+\ldots . . \mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots . \mathrm{MgCl}_{2}(\mathrm{aq})+\ldots . . \mathrm{H}_{2}(\mathrm{~g})$ sum of coefficients........
5) $\ldots . . \mathrm{MgCO}_{3}(\mathrm{~s})+\ldots . \mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots . . \mathrm{MgCl}_{2}(\mathrm{aq})+\ldots . . \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\ldots . . \mathrm{CO}_{2}(\mathrm{~g})$ sum of coefficients.
6) $\ldots . . \mathrm{NaCl}(\mathrm{s})+\ldots . . \mathrm{CaO}(\mathrm{aq}) \rightarrow \ldots . . \mathrm{CaCl}_{2}(\mathrm{aq})+\ldots . . \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ sum of coefficients
7) $\ldots . . \mathrm{Al}(\mathrm{s})+\ldots . . \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \rightarrow \ldots . \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\ldots . \mathrm{Fe}(\mathrm{s})$ sum of coefficients
8) $\ldots . . \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+\ldots . . \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \ldots . . \mathrm{MgSO}_{4}(\mathrm{aq})+\ldots . .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$ sum of coefficients \qquad
9) $\ldots . . \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\ldots . . \mathrm{C}(\mathrm{s}) \rightarrow \ldots . . \mathrm{Fe}(\mathrm{s})+\ldots . . \mathrm{CO}(\mathrm{g})$ sum of coefficients.
10) $\ldots . . \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\ldots . . \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \ldots . . \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+\ldots . . \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
sum of coefficients \qquad

Mole ratios

- The coefficients in a balanced chemical equation tell us the mole ratios (or molar ratio) of reactants and products.
- In the equation below we can determine that 2 mol of A react with 3 mol of B to form 1 mol of C and 2 mol of D .

$$
2 A+3 B \rightarrow C+2 D
$$

Exercises:

1) State the mole ratios in the following chemical equations.
(a) $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CO}_{2}$
$\mathrm{CH}_{3} \mathrm{OH}: \mathrm{O}_{2}$
(b) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{N}_{2}: \mathrm{H}_{2}$
$\mathrm{H}_{2}: \mathrm{NH}_{3}$
$\mathrm{N}_{2}: \mathrm{NH}_{3}$
2) Determine the amount of the following.
(a) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

The amount of CO_{2} produced from 0.10 mol of CH_{4}
The amount of O_{2} required to react with 0.75 mol of CH_{4}
(b) $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

The amount of H_{2} produced from 1.50 mol of Mg
The amount of H_{2} produced from 0.80 mol of HCl
The amount of HCl required to react with 3.00 mol of Mg

Reactivity 2.1.3

Understandings:

- The limiting reactant determines the theoretical yield.

Learning outcomes:

- Identify the limiting and excess reactants from given data.

Additional notes:

- Distinguish between the theoretical yield and the experimental yield.

Limiting reactant and excess reactant

- The limiting reactant (reagent) is the reactant that limits the amount of product(s) that can be formed.
- The excess reactant is the reactant that remains when the limiting reactant is consumed.

- How many sandwiches can be made with 12 pieces of bread and 7 slices of ham?
- Which is the limiting reactant?
- Which is the excess reactant?

How to determine the limiting and excess reactant.

1. Determine the amount (in mol) of each reactant.
2. Divide the amount of each reactant by its coefficient in the balanced equation.
3. The lowest value is the limiting reactant and the highest is the excess reactant.

Exercises:

1) 50.0 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ is reacted with 75.0 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ according to the following equation.

$$
2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(a) Determine the limiting and excess reactants.
(b) Determine the amount of excess reactant that remains at the end of the reaction.
2) 3.00 g of Zn is reacted with $50.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ according to the following equation.

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

(a) Determine the limiting and excess reactants.
(b) Determine the amount of excess reactant that remains at the end of the reaction.
(c) 30.0 g of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ and 50.0 g of sodium phosphate $\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$ are reacted together. Determine the limiting and excess reactants.

$$
3 \mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}+3 \mathrm{NaNO}_{3}
$$

Reactivity 2.1.4

Understandings:

- The percentage yield is calculated from the ratio of experimental yield to theoretical yield.

Learning outcomes:

- Solve problems involving reacting quantities, limiting and excess reactants, theoretical, experimental and percentage yields.

Theoretical yield and percentage yield

- The theoretical yield is the maximum amount of product that can be formed in a chemical reaction (based on the stoichiometry of the reaction and amount of the limiting reactant).
- The actual yield is the actual amount of product that is formed in a chemical reaction.
- The percentage yield is the actual yield divided by the theoretical yield.

$$
\text { Percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%
$$

Exercises:

1) A 15.0 g sample of pure $\mathrm{K}_{2} \mathrm{O}$ produces 7.62 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$. Determine the percentage yield of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in the reaction.

$$
4 \mathrm{~K}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

2) Aluminium reacts with excess oxygen according to the following equation. Determine the percentage yield if 20.0 g of AI reacts with oxygen to produce 32.7 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$.

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

3) A 20.0 g sample of pure $\mathrm{Fe}_{3} \mathrm{O}_{4}$ produces 5.98 g of Fe . Determine the percentage yield of Fe in the reaction.

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

4) 100.0 g of iron(II) oxide is reacted with 100.0 g of carbon. 46.73 g of iron is produced. Calculate the \% yield of Fe.

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s}) \rightarrow 4 \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

5) 15.0 g of CaCO_{3} is reacted with $50.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl} .1 .85{\mathrm{~g} \mathrm{of} \mathrm{CO}_{2} \text { is }}^{\text {i }}$ produced. Calculate the \% yield of CO_{2}.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Reactivity 2.1.5

Understandings:

- The atom economy is a measure of efficiency in green chemistry.

Learning outcomes:

- Calculate the atom economy from the stoichiometry of a reaction.

Additional notes:

- Include discussion of the inverse relationship between atom economy and wastage in industrial processes.
- The equation for calculation of the atom economy is given in the data booklet.

Linking questions:

- Structure 2.4, Reactivity 2.2 The atom economy and the percentage yield both give important information about the "efficiency" of a chemical process. What other factors should be considered in this assessment?

Atom economy

- The atom economy of a chemical reaction is a measure of the amount of starting materials that become useful products.
- A high \% atom economy means that the reaction has a high efficiency which results in less waste being produced.

$$
\% \text { atom economy }=\frac{\text { molar mass of desired product }}{\text { molar mass of all reactants }} \times 100
$$

How to calculate the atom economy for a reaction:

1) Calculate the sum of the molar masses of the reactants.
2) Calculate the molar mass of the desired product and multiply by the coefficient.
3) Calculate the \% atom economy.

Example: Calculate the atom economy for the following reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}+\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

1) Calculate the sum of the molar masses of the reactants.
2) Calculate the molar mass of the desired product and multiply by the coefficient.
3) Calculate the \% atom economy.

Exercises:

1) Calculate the atom economy for the following reaction for making hydrogen $\left(\mathrm{H}_{2}\right)$ by reacting coal with steam. Comment on the efficiency of the reaction.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

2) Titanium is manufactured by reacting titanium(IV) chloride with magnesium. Calculate the atom economy for this method of producing titanium. Comment on the efficiency of the reaction.

$$
\mathrm{TiCl}_{4}(\mathrm{~s})+2 \mathrm{Mg}(\mathrm{~s}) \rightarrow \mathrm{Ti}(\mathrm{~s})+2 \mathrm{MgCl}_{2}(\mathrm{~s})
$$

