WIS J OREML
 Trutortals lor aB cheufsuy

Reactivity 2.2 HL

WIS J OREML
 Trutortals lor aB cheufsuy

Reaction mechanisms

Chemical reactions can occur in a series of steps called elementary steps; the sequence of elementary steps is the reaction mechanism.

$$
\text { slow }
$$

The slowest step in the mechanism is the rate-determining step (the overall rate of reaction depends on this step).

$2 \mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathbf{2 N \mathrm { N } _ { 2 (\mathrm { g }) }}+\mathrm{Cl}_{2(\mathrm{~g})}$

Step 1: $\mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{(\mathrm{g})} \quad$ slow Step 2: $\mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})}+\mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{\mathbf{2 (\mathrm { g })}}$ fast
$\mathrm{Cl}_{(\mathrm{g})}$ is a reaction intermediate; it is produced in one step and consumed in the next step.
The elementary steps add up to the overall equation.

Consider the overall reaction shown and the proposed two-step mechanism.
$\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}$
Step 1:
$\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{NO}_{2(5)} \rightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{NO}_{(\mathrm{g})}$
slow
Step 2:
$\mathrm{NO}_{3(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$ fast
The elementary steps add up to the overall equation.

When considering a proposed reaction mechanism, the following criteria are applied:

- The sum of the elementary steps must add up to the overall equation.
- The rate expression of the rate-determining step must agree with the experimentally determined rate expression.

HISJ OTRE[L
 Trusortals lor aB Ghemistiy

Catalysts and
intermediates

Catalysts appear in the rate-determining step (the slowest step in the mechanism).
Catalysts are not consumed in a reaction, so they appear in the reactants side of the rate-determining step and the products side of a later step.
Catalysts do not appear in the overall equation for the reaction (nor do intermediates).

Step 1: $\mathrm{Cl}^{(\mathrm{g})}{ }^{+} \mathrm{O}_{3(\mathrm{~g})} \rightarrow \mathrm{ClO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$ slow Step 2: $\mathrm{O}_{(\mathrm{g})}+\mathrm{ClO}_{(\mathrm{g})} \rightarrow \mathrm{Cl}{ }_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$ fast Intermediate: $\mathrm{ClO}^{(\mathrm{g})}$
Catalyst: $\mathrm{Cl}^{(\mathrm{g})}$
Overall equation: $\mathrm{O}_{\mathbf{3 (\mathrm { g })}}+\mathrm{O}_{(\mathrm{g})} \rightarrow \mathbf{2 O}_{\mathbf{2 (\mathrm { g })}}$

Step 1: $\mathrm{H}_{2} \mathrm{O}_{2(1)}+\mathrm{I}_{(\mathrm{aq)}}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{II})}+\mathrm{IO}_{(\mathrm{aq})}^{-} \quad$ slow
Step 2: $\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{I})}+\mathrm{IO}_{(\text {(aq) }}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{O}_{2(\mathrm{~g})}+\mathrm{I}_{\text {(aq) }}^{-}$fast Intermediate: $\mathrm{IO}^{-}{ }_{(\mathrm{aq})}$
Catalyst: $I_{(a q)}^{-}$
Overall equation: $\mathbf{2 H}_{2} \mathrm{O}_{2(\mathrm{I})} \rightarrow \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } _ { (\mathrm { I }) }}+\mathbf{O}_{\mathbf{2 (\mathrm { g })}}$

An energy level profile for a two-step reaction is shown. The first step has the highest activation energy so it is the rate-determining step.

A transition state is a hypothetical state that is midway between the reactants and products.
It occurs at the highest point on the energy level profile and is unstable due to its high energy. Reaction intermediates are more stable.

HISJCTRELIL
 Triontals tor aB ehemisty

Molecularity

Unimolecular - an elementary step that involves one reactant particle.
Bimolecular - an elementary step that involves two reactant particles.
Termolecular - an elementary step that involves three reactant particles.
Termolecular steps are rare because of the low probability of three reactant particles colliding with sufficient energy and correct orientation.

A unimolecular elementary step involves one reactant particle.

$\mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{(\mathrm{g})}$

A bimolecular elementary step involves two reactant particles.

A termolecular elementary step involves three reactant particles.

Termolecular steps are rare because of the low probability of three reactant particles colliding with sufficient energy and correct orientation.

The term molecularity indicates the number of reactant particles in an elementary step.

$$
2 \mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

Step 1: $\mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{(\mathrm{g})} \quad$ slow Step 2: $\mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})}+\mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{\mathbf{2 (g)}}$ fast
Step 1: one reactant particle (unimolecular) Step 2: two reactant particles (bimolecular)

$$
\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Step 1: $\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{NO}_{3(\mathrm{~g})}$ slow Step 2: $\mathrm{NO}_{\mathbf{3 (\mathrm { g })}}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{\mathbf{2 (g)}}+\mathrm{CO}_{\mathbf{2 (g)}}$ fast

Step 1: two reactant particles (bimolecular) Step 2: two reactant particles (bimolecular)

HJSJ Oheria
 Tribortals lor aB Ghemisary

Rate equations

A rate equation depends on the mechanism of the reaction and can only be determined experimentally.

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \text { rate }=k[\mathrm{~A}]^{\times}[\mathrm{B}]^{y}
\end{aligned}
$$

k is the rate constant (temperature dependent) x is the order of reaction with respect to A y is the order of reaction with respect to B $x+y$ is the overall order of reaction

The components of a rate equation can only be determined experimentally:

- Initial rates are calculated using concentration measurements.
- Orders of reaction are calculated using initial rates from several experiments.
- The initial rate and orders of reaction are used to calculate the value of the rate constant k.

WIS J OREML
 Trutortals lor aB chemisuy

Orders of reaction

The order of reaction with respect to a particular reactant is the power to which the concentration of a reactant is raised in the rate expression.

$$
2 \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{NO}_{(\mathrm{g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{N}_{2(\mathrm{~g})}
$$

The rate expression has been experimentally determined to be:

$$
\text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]
$$

The reaction is second-order with respect to NO and first-order with respect to H_{2}

Orders of reaction can only be determined experimentally.

If changing the concentration of a reactant has no effect on the rate of reaction, the reaction is zero-order with respect to that reactant.
If changing the concentration of a reactant produces directly proportional changes in the rate of reaction, the reaction is first-order with respect to that reactant. If changing the concentration of a reactant leads to an increase in the rate of reaction equal to the square of the change, the reaction is second-order with respect to that reactant.

$\mathbf{2 H}_{\mathbf{2 (g)}}+\mathbf{2 N O _ { (\mathrm { g }) }} \rightarrow \mathbf{2 H}_{\mathbf{2}} \mathrm{O}_{(\mathrm{g})}+\mathrm{N}_{\mathbf{2 (\mathrm { g })}}$

Experiment	Initial [NO] $\mathrm{mol} \mathrm{dm}^{-3}$	Initial [H2] $\mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	0.100	0.100	2.53×10^{-6}
2	0.100	0.200	5.05×10^{-6}
3	0.200	0.100	1.01×10^{-5}
4	0.300	0.100	2.28×10^{-5}

rate $=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$

$\mathrm{O}_{\mathbf{2 (\mathrm { g })}}+\mathbf{2 \mathrm { NO } _ { (\mathrm { g }) } \rightarrow \mathbf { 2 } \mathrm { NO } _ { 2 (\mathrm { g }) }}$

Experiment	Initial $\left[\mathrm{O}_{2}\right]$ mol dm	Initial [NO] mol dm	Initial rate mol dm						
	$1.10 \times \mathrm{s}^{-1}$			$	$	-2	1.30×10^{-2}	3.20×10^{-3}	
:---:	:---:	:---:	:---:						
2	2.20×10^{-2}	1.30×10^{-2}	6.40×10^{-3}						
3	1.10×10^{-2}	2.60×10^{-2}	12.8×10^{-3}						
4	3.30×10^{-2}	1.30×10^{-2}	9.60×10^{-3}						

rate $=k\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}$

$\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}$

Experiment

		0.100
2	0.400	0.100
3	0.100	0.200
	rate $=\boldsymbol{k}\left[\mathbf{N O}_{\mathbf{2}} \mathbf{]}^{\mathbf{2}}\right.$	

Rate vs concentration (for reactant A)

Concentration

Concentration

Concentration
rate $=k$
rate $=k[\mathrm{~A}]$
rate $=k[A]^{2}$

Rate graphs

Concentration vs time (for reactant A)

Time

rate $=k$
rate $=k[\mathrm{~A}]$
rate $=k[A]^{2}$

HJSJ Oheria
 Tribortals lor aB Ghemisary

Rate equations

The rate equation is determined from the slow step of a reaction mechanism.
$\mathrm{NO}_{2} \mathrm{Cl}$ decomposes to form NO_{2} and Cl_{2}. The chemical equation for the reaction is shown.

$$
2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

A proposed two-step mechanism is:
Step 1: $\mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cl}(\mathrm{g}) \quad$ slow
Step 2: $\mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g})+\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{NO}_{\mathbf{2}}(\mathrm{g})+\mathrm{Cl}_{\mathbf{2}}(\mathrm{g})$ fast
The rate equation is determined from the slow step, therefore:

$$
\text { rate }=k\left[\mathrm{NO}_{2} \mathrm{Cl}\right]
$$

Rate equations

Nitrogen monoxide and oxygen react according to the equation shown:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A proposed two-step mechanism is:
Step 1: $\mathrm{NO}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathrm{NO}_{3}(\mathrm{~g}) \quad$ fast
Step 2: $\mathbf{N O}_{3}(\mathrm{~g})+\mathbf{N O}(\mathrm{g}) \rightarrow \mathbf{2} \mathbf{N O}_{\mathbf{2}}(\mathrm{g}) \quad$ slow
The rate equation is determined from the slow step, which is the second step.

Two step mechanism with slow second step:

$$
\begin{array}{ll}
\text { Step 1: } & \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{3}(\mathrm{~g})
\end{array} \text { fast } \quad \begin{array}{ll}
\text { Step 2: } & \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})
\end{array}
$$

In this mechanism, NO_{3} is an intermediate and cannot be included in the rate equation. The concentration of the intermediate depends on the [NO] and $\left[\mathrm{O}_{2}\right]$ in step 1 so the rate equation is:

$$
\text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
$$

Note that we include the [NO] in the second step in the rate equation.

HISJ OTRELL
 Trusortals lor aB Ghemistiy

$$
\begin{gathered}
\text { Evaluating reaction } \\
\text { mechanisms }
\end{gathered}
$$

When evaluating a reaction mechanism, two points must be considered:

1. The sum of the elementary steps must add up to the overall equation.
2. The mechanism must be consistent with the rate equation determined from experimental data.

Example: Consider the reaction:

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})
$$

The rate equation determined from experimental data is:

$$
\text { rate }=k\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]
$$

The proposed two-step reaction mechanism is: Step 1: $\mathrm{NO}_{\mathbf{2}}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{\mathbf{2}} \mathrm{F}(\mathrm{g})+\mathrm{F}(\mathrm{g})$ slow Step 2: $\mathrm{NO}_{\mathbf{2}}(\mathrm{g})+\mathrm{F}(\mathrm{g}) \rightarrow \mathrm{NO}_{\mathbf{2}} \mathrm{F}(\mathrm{g}) \quad$ fast

Step 1: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})+\mathrm{F}(\mathrm{g})$ slow Step 2: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}(\mathrm{g}) \rightarrow \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})$
 fast

The intermediate, $\mathrm{F}(\mathrm{g})$, is canceled out. The elementary steps add up to the overall equation.
The rate equation determined from the slow step is:

$$
\text { rate }=k\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]
$$

which is consistent with the rate equation determined from the experimental data.
This is a possible mechanism for the reaction.

Consider the reaction:

$$
\begin{array}{lc}
\quad \text { 2NO(g) }+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g}) & \\
\text { Step 1: } \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NOBr}_{2}(\mathrm{~g}) & \text { fast } \\
\text { Step 2: } \mathrm{NOBr}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g}) & \text { slow }
\end{array}
$$

The rate equation determined from experimental data is:

$$
\text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]
$$

Step 1: $\mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NOBr}_{2}(\mathrm{~g})$
 fast Step 2: $\mathrm{NOBr}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{g})$ slow

 The intermediate, $\mathrm{NOBr}_{2}(\mathrm{~g})$, is canceled out. The elementary steps add up to the overall equation. The rate equation determined from the slow step is:$$
\text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]
$$

which is consistent with the rate equation determined from the experimental data.
This is a possible mechanism for the reaction.

HJSJ Oheria
 Tribortans lor aB Gheutsay

$$
\text { The rate constant } \mathbb{k}
$$

The rate constant k is temperature dependent, meaning that it has a specific value at a specific temperature. The value of the rate constant increases exponentially with an increase in temperature, as shown below.

Rate constant k

Temperature (K)	Rate constant \boldsymbol{k}
288	0.0521
298	0.101
308	0.184
318	0.332

A plot of the rate constant k against temperature shows an exponential increase.

-50000
 -50000
 $k=A e^{\frac{-}{8.31 \times 293}}$
 $k=A e^{\overline{8.31 \times 303}}$
 $k=A e^{-20.54}$
 $k=A e^{-19.86}$
 $k=A\left(1.20 \times 10^{-9}\right) \quad k=A\left(2.37 \times 10^{-9}\right)$

An increase in temperature of 10 K doubles the fraction of particles that have energy equal to or greater than the activation energy.
The value of the rate constant k increases which results in an increase in the rate of reaction.

The table below shows the effect of temperature on the fraction of particles with $E \geq E_{\mathrm{a}}$, the value of the rate constant and on the rate of reaction.

Change in temperature	Fraction of particles with $E \geq E_{\mathrm{a}}$	Rate constant \boldsymbol{k}	Rate of reaction
Increase	Increases	Increases	Increases
Decrease	Decreases	Decreases	Decreases

Units of the rate constant k

The units of the rate constant k depend on the overall order of reaction, as shown in the table.

Zero-order	First-order	Second-order	Third-order
$\mathrm{mol} \mathrm{dm}^{-3} \mathbf{s}^{\mathbf{- 1}}$	\mathbf{s}^{-1}	$\mathrm{~mol}^{-1} \mathbf{d m}^{\mathbf{3}} \mathbf{s}^{-1}$	$\mathrm{~mol}^{-\mathbf{2}} \mathbf{d m}^{6} \mathbf{s}^{-1}$

Calculate the value of the rate constant k

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 \mathrm { NO } _ { 2 }}(\mathrm{g}) \quad \text { rate }=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.
$$

	Initial [NO] $\mathrm{mol} \mathrm{dm}^{-3}$	Initial $\left[\mathrm{O}_{2}\right]$ $\mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
Experiment 1	$\mathbf{0 . 0 1 0}$	$\mathbf{0 . 0 1 0}$	$\mathbf{2 . 5 \times \mathbf { 1 0 } ^ { - 5 }}$
Experiment 2	0.020	0.010	1.0×10^{-4}
Experiment 3	0.010	0.020	$5.0 \times \mathbf{1 0}^{-5}$

Using the data from experiment 1:

$$
\begin{gathered}
\text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] \\
2.5 \times 10^{-5}=k(0.010)^{2}(0.010) \\
k=2.5 \times 10^{-5} / 1.0 \times 10^{-6} \\
k=25 \mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}
\end{gathered}
$$

HJSJ Oheria
 Trutortals lor aB chemisury

The Arrhenius equation

$k=A e^{\frac{-E_{a}}{R T}}$

k : the rate constant
A : the Arrhenius constant (frequency factor or preexponential factor)
$e^{\frac{-E a}{R T}}$: the fraction of particles that have energy equal to or greater than the E_{a} at temperature T

$k=A e^{\frac{-E_{a}}{R T}}$

k : depend on reaction
A : same as k
$E_{\mathrm{a}}: \mathrm{J} \mathrm{mol}^{-1}$
$\mathrm{R}: 8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
T: kelvin (K)

The Arrhenius constant, A, takes into account the frequency of collisions with the correct orientation for the reaction to occur.

$$
\begin{gathered}
A=Z p \\
\mathrm{z}=\text { collision frequency } \\
p=\text { steric factor }
\end{gathered}
$$

The Arrhenius constant, A, takes into account the frequency of collisions with the correct orientation for the reaction to occur.

$$
\mathrm{NO}_{(\mathrm{g})}+\mathrm{NO}_{3(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

Steric factor, $p=0.006$ Only 6 out of every 1000 collisions have the correct orientation for a reaction to occur.

$\frac{-E_{a}}{R T}$

f : the fraction of collisions with energy equal to or greater than the activation energy for the reaction.

$E_{\mathrm{a}}(\mathrm{J} \mathrm{mol}$	
	$\boldsymbol{1})$
50000	1.70×10^{-9}
75000	7.03×10^{-14}
100000	2.90×10^{-18}

$-E_{a} \quad f$: the fraction of collisions with energy

$$
f=e^{\overline{R T}}
$$ equal to or greater than the activation energy for the reaction.

Temperature (K)	$f\left(E_{\mathrm{a}}=50000 \mathrm{~J} \mathrm{~mol}^{-1}\right)$
298	1.70×10^{-9}
308	3.29×10^{-9}
318	6.12×10^{-9}

$$
k=A e^{\frac{-L a}{R T}}
$$

Higher temperatures and lower activation energies result in a higher value of the rate constant k and an increased rate of reaction.
Lower temperatures and higher activation energies result in a lower value of the rate constant k and a decreased rate of reaction.

HISJOTnELu
 Truspitals lor aB Ghemistiy

Calculating activation
energy, E_{a}

$$
k=A e^{\frac{-E_{a}}{R T}}
$$

k : the rate constant
A : the Arrhenius constant (frequency factor or preexponential factor)
$e^{\frac{-E a}{R T}}$: the fraction of particles that have energy equal to or greater than the E_{a}

$\frac{-E_{a}}{R T}$

$$
\ln k=\frac{-E_{a}}{R T}+\ln A
$$

$$
\begin{gathered}
\ln k=\frac{-E_{a}}{R T}+\ln A \\
\ln k=\frac{-E_{a}}{R}\left(\frac{1}{T}\right)+\ln A \\
y=m x+c
\end{gathered}
$$

1/T (K^{-1})

A graph of $\ln k$ against $1 /$ T gives a straight line with the gradient $-E_{a} / R$
$-E_{\mathrm{a}}\left(\mathrm{J} \mathrm{mol}^{-1}\right)=\operatorname{gradient}(\mathrm{K}) \times 8.31\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$

-1.84

gradient $=\frac{1.84}{3.30 \times 10^{-4}}=-5576 \mathrm{~K}$
$-E_{a}=-5576 \mathrm{~K} \times 8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
E_{a}=46337 \mathrm{~J} \mathrm{~mol}^{-1}
$$

