Reactivity 2.3 HL

IB CHEMISTRY HL

Reactivity 2.3.5

Understandings:

- The reaction quotient, Q, is calculated using the equilibrium expression with nonequilibrium concentrations of reactants and products.

Learning outcomes:

- Calculate the reaction quotient Q from the concentrations of reactants and products at a particular time, and determine the direction in which the reaction will proceed to reach equilibrium.

Reaction quotient Q

- The reaction quotient Q measures the relative amounts of reactants and products at a certain point in time.
- It is expressed with non-equilibrium concentrations of reactants and products.

$$
\begin{gathered}
\mathrm{aA}+b \mathrm{~B} \rightleftharpoons \mathrm{CC}+\mathrm{DD} \\
Q=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}
\end{gathered}
$$

Exercise: Outline the difference between the reaction quotient Q and the equilibrium constant K.

The reaction quotient Q is calculated using non-equilibrium concentrations of reactants and products. The equilibrium constant K is calculated using equilibrium concentrations of reactants and products.

Q, K and direction of reaction

- When the value of Q is equal to the value of $K(Q=K)$ the reaction is at equilibrium.
- If the value of Q is lower than the value of $K(Q<K)$ the concentration of products is lower than at equilibrium.
- The reaction will proceed to the right to increase the concentration of products and the value of Q until equilibrium is reached.
- If the value of Q is higher than the value of $K(Q>K)$ the concentration of products is higher than at equilibrium.
- The reaction will proceed to the left to decrease the concentration of the products and the value of Q until equilibrium is reached.

Example 1: Calculate the value of Q when $\left[\mathrm{N}_{2}\right]$ is $0.814 \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{H}_{2}\right]$ is 0.422 and $\left[\mathrm{NH}_{3}\right]$ is $0.372 \mathrm{~mol} \mathrm{dm}^{-3}$.

$$
\begin{gathered}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad K=6.09 \text { at } 350{ }^{\circ} \mathrm{C} \\
Q=\frac{[0.372]^{2}}{[0.814][0.422]^{3}}=2.26
\end{gathered}
$$

Based on your calculation, predict in which direction the reaction will proceed to reach equilibrium and explain your answer.
$Q<K_{\mathrm{c}}$ so the reaction will proceed to the right to reach equilibrium.

Example 2: Calculate the value of Q when $\left[\mathrm{N}_{2}\right]$ is $0.814 \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{H}_{2}\right]$ is 0.523 and $\left[\mathrm{NH}_{3}\right]$ is $1.32 \mathrm{~mol} \mathrm{dm}^{-3}$.

$$
\begin{gathered}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad K=6.09 \text { at } 350^{\circ} \mathrm{C} \\
Q=\frac{[1.32]^{2}}{[0.841][0.523]^{3}}=14.5
\end{gathered}
$$

Based on your calculation, predict in which direction the reaction will proceed to reach equilibrium and explain your answer.
$Q>K_{c}$ - the reaction will proceed to the left to reach equilibrium.

Summary:

Q vs \boldsymbol{K}	Direction of reaction
$\mathrm{Q}>K$	Reaction proceeds to left (reactants side)
$\mathrm{Q}<K$	Reaction proceeds to right (products side)
$\mathrm{Q}=K$	No net change (reaction is at equilibrium)

Exercises:

1) The table below show non-equilibrium concentrations of reactions and products for the following reaction at $527^{\circ} \mathrm{C}$. The value of K for this reaction at $527^{\circ} \mathrm{C}$ is 5.10 .

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Species	Concentration at time $\boldsymbol{t}\left(\mathbf{m o l ~ d m}^{-3}\right)$
$\mathrm{CO}(\mathrm{g})$	0.15
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	0.25
$\mathrm{H}_{2}(\mathrm{~g})$	0.42
$\mathrm{CO}_{2}(\mathrm{~g})$	0.37

Calculate the reaction quotient Q and predict in which direction the reaction will proceed to reach equilibrium.
Write expression for Q :
$Q=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}$
Input values into the expression (products in numerator, reactants in denominator)

$$
Q=\frac{(0.42)(0.37)}{(0.25)(0.15)}=4.1
$$

The value of the reaction quotient Q is less than the value of K so the reaction will proceed to the right (products side), increasing the value of Q.
2) The table below shows non-equilibrium concentrations of reactions and products for the following reaction at $1000^{\circ} \mathrm{C}$. The value of K for this reaction at $1000^{\circ} \mathrm{C}$ is 1.00×10^{-13}.

$$
2 \mathrm{HF}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})
$$

Species	Concentration at time $\boldsymbol{t}\left(\mathbf{m o l ~ d m}^{\mathbf{- 3}}\right)$
$\mathrm{HF}(\mathrm{g})$	23.0
$\mathrm{H}_{2}(\mathrm{~g})$	0.540
$\mathrm{~F}_{2}(\mathrm{~g})$	0.380

Calculate the reaction quotient Q and predict in which direction the reaction will proceed to reach equilibrium.

Write expression for Q :
$Q=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{F}_{2}\right]}{[\mathrm{HF}]^{2}}$
Input values into the expression (products in numerator, reactants in denominator)

$$
Q=\frac{(0.540)(0.380)}{(23.0)^{2}}=3.88 \times 10^{-4}
$$

The value of the reaction quotient Q is greater than the value of K so the reaction will proceed to the left (reactants side), decreasing the value of Q.

Reactivity 2.3.6

Understandings:

- The equilibrium law is the basis for quantifying the composition of an equilibrium mixture.

Learning outcomes:

- Solve problems involving values of K and initial and equilibrium concentrations of the components of an equilibrium mixture.

Additional notes:

- When K is very small, the approximation [reactant $]_{\text {initial }} \approx[\text { reactant }]_{\text {eqm }}$ should be understood.
- The use of quadratic equations is not expected. Only homogeneous equilibria will be assessed.

Linking questions:

- Reactivity 3.1 How does the equilibrium law help us to determine the pH of a weak acid, weak base or a buffer solution?

Determining the value of K given the concentration of products and reactants at equilibrium

Example: Calculate the K for the reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

given the following equilibrium concentrations:

$$
\left[\mathrm{H}_{2}\right]=0.61 \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{CO}_{2}\right]=1.6 \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{H}_{2} \mathrm{O}\right]=1.1 \mathrm{~mol} \mathrm{dm}^{-3},[\mathrm{CO}]=1.4 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Write the expression for the K and plug in the equilibrium concentrations;

$$
K=(1.1 \times 1.4) \div(0.61 \times 1.6)=1.6
$$

Determining the value of K given the initial concentration of one species and the equilibrium concentration of another

Example: Before equilibrium is reached, a $1.00 \mathrm{dm}^{3}$ flask contains $0.350 \mathrm{~mol}^{\text {of } \mathrm{SO}_{3}(\mathrm{~g})}$ at $832^{\circ} \mathrm{C}$. Determine the K for the reaction if 0.093 mol of oxygen is present at equilibrium.

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

	$2 \mathrm{SO}_{3}(\mathrm{~g})$	$\mathrm{O}_{2}(\mathrm{~g})$	$2 \mathrm{SO}_{2}(\mathrm{~g})$
Initial $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	0.350	0	0
Change $(\mathrm{mol} \mathrm{dm}$			
-3$)$	-2×0.093	+0.093	$+2 \times 0.093$
Equilibrium $(\mathrm{mol}$ $\left.\mathrm{dm}^{-3}\right)$	0.164	0.093	0.186

$$
K=\left(0.093 \times 0.186^{2}\right) \div\left(0.164^{2}\right)=0.12
$$

Calculating the equilibrium concentrations given the K for the reaction and initial concentrations

The K for the following reaction is 6.78 at a certain temperature. The initial concentrations of $\mathrm{NO}^{2} \mathrm{SO}_{3}$ are both $0.0300 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the equilibrium concentration of each reactant.

$$
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g})
$$

	$\mathrm{SO}_{3}(\mathrm{~g})$	$\mathrm{NO}(\mathrm{g})$	$\mathrm{NO}_{2}(\mathrm{~g})$	$\mathrm{SO}_{2}(\mathrm{~g})$
Initial $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	0.0300	0.0300	0	0
Change $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$-x$	$-x$	$+x$	$+x$
Equilibrium $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$0.0300-x$	$0.0300-x$	x	x

$6.78=\left(x^{2}\right) \div(0.0300-x)^{2}$
take the square root of both sides
$2.60=x \div(0.0300-x)$
Solve for x
$x=0.0217$
$\left[\mathrm{SO}_{3}\right]=0.0300-0.0217=0.00830 \mathrm{~mol} \mathrm{dm}^{-3}$
$[\mathrm{NO}]=0.0300-0.0217=0.00830 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{NO}_{2}\right]=0.0217 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{SO}_{2}\right]=0.0217 \mathrm{~mol} \mathrm{dm}^{-3}$

Calculating equilibrium concentrations when K_{c} is very small

- In some chemical reactions, K is a small value, less than 1×10^{-3}. In these reactions, the forward reaction barely proceeds, and the equilibrium mixture consists of mostly reactants.
- The change in the initial concentration of reactants is almost zero and the equilibrium concentrations of reactants are almost equal to their initial concentrations ([reactant] $]_{\text {intial }} \approx$ [reactant] eqm).

Example: The thermal decomposition of water has a K value of 7.3×10^{-18} at $1000^{\circ} \mathrm{C}$. If the initial concentration of $\mathrm{H}_{2} \mathrm{O}$ is $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$, calculate the concentration of O_{2} at equilibrium.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$2 \mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{O}_{2}(\mathrm{~g})$
Initial $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	0.10	0	0
Change $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$-2 x$	$+2 x$	$+x$
Equilibrium $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$0.10-2 x$	$2 x$	x

Because value of K is less than 1×10^{-3}, the equilibrium concentration of the $\mathrm{H}_{2} \mathrm{O}$ is the same as the initial concentration ([reactant] initial $\approx[$ reactant $]$ eam $)$.
Solve for x
$x=2.6 \times 10^{-7}$
Equilibrium concentration of $\mathrm{H}_{2}=2 x=5.2 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$

The assumption made in this example is that subtracting x from the initial concentration will not make a difference within the precision used (to 2 significant figures). In general, if the value of K is less than 1×10^{-3}, this assumption is valid.

Reactivity 2.3.7

Understandings:

- The equilibrium constant and Gibbs energy change, ΔG, can both be used to measure the position of an equilibrium reaction.

Learning outcomes:

- Calculations using the equation $\Delta G \ominus=-R T \ln K$.

Additional notes:

- The equation is given in the data booklet.

Linking questions:

- Reactivity 1.4 How can Gibbs energy be used to explain which of the forward or backward reaction is favoured before reaching equilibrium?

Gibbs free energy and equilibrium

- A system not at equilibrium (where $Q \neq K$) will proceed spontaneously in the direction necessary to reach equilibrium (where $Q=K$).
- As a reaction approaches equilibrium, the Gibbs free energy change, ΔG, becomes less negative and eventually reaches zero at equilibrium.
- The equilibrium position occurs where the free energy is at its minimum and entropy is at its maximum.

Plots of free energy against extent of reaction

- The reaction proceeds spontaneously from either pure reactants or pure products to the equilibrium position where $\Delta G=0$ and $Q=K$ (shown by the green arrows).
- The reaction away from the equilibrium position is non-spontaneous (shown by the red arrows).

Spontaneous reaction

For a spontaneous reaction, the equilibrium position lies further towards pure products meaning that at equilibrium [products] > [reactants] and $K>1$.
$G \ominus$ (products) $<G \ominus$ (reactants) so $\Delta G \ominus<0$ (spontaneous).

Non-spontaneous reaction

For a non-spontaneous reaction, the equilibrium position lies further towards pure reactants meaning that at equilibrium [reactants] > [products] and $K<1$.
$G \ominus$ (products) $>G \ominus$ (reactants) so $\Delta G \ominus>0$ (non-spontaneous).

$\Delta G, Q$ versus K and direction of reaction

- If a system is not at equilibrium, ΔG and Q can be used to tell us in which direction the reaction will proceed to reach equilibrium.
- For a spontaneous reaction, ΔG is negative, $Q<K$ and the reaction will proceed in the forward direction until equilibrium is reached.
- For a non-spontaneous reaction, ΔG is positive, $Q>K$ and the reaction will proceed in the reverse direction until equilibrium is reached.

Summary:

	ΔG	Q versus K	Direction of reaction
Spontaneous reaction	$\Delta G<0$	$Q<K$	Reaction proceeds to right
Non-spontaneous reaction	$\Delta G>0$	$Q>K$	Reaction proceeds to left
Reaction at equilibrium	$\Delta G=0$	$Q=K$	No net change

Relationship between $\Delta G \ominus$ and K

- The relationship between $\Delta G \ominus$ and K is given by the following equation which can be found in section one of the IB chemistry data booklet.
- In this equation, temperature is in kelvin and $\Delta G \ominus$ in $\mathrm{J} \mathrm{mol}^{-1}$.
- R is the universal gas constant, $8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

$$
\Delta G \ominus=-R T \ln K
$$

- This equation can be rearranged to solve for K.

$$
K=e^{-\frac{\Delta G}{R T}}
$$

Exercises:

1) Calculate the value of K at 298 K for a reaction given that $\Delta G \ominus=-33.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& K=\mathrm{e}^{-(-32960 \div(8.31 \times 298))} \\
& K=\mathrm{e}^{13.3} \\
& K=5.98 \times 10^{5}
\end{aligned}
$$

2) Calculate the $\Delta G \ominus$ for a reaction given that the K is 45.6 at 298 K .

$$
\begin{aligned}
& \Delta G \ominus=-8.31 \times 298 \times \ln (45.6) \\
& \Delta G \ominus=-9.46 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

