Reactivity 2.3 HL

IB CHEMISTRY HL

J

Reactivity 2.3.5

Understandings:

• The reaction quotient, *Q*, is calculated using the equilibrium expression with non-equilibrium concentrations of reactants and products.

Learning outcomes:

• Calculate the reaction quotient Q from the concentrations of reactants and products at a particular time, and determine the direction in which the reaction will proceed to reach equilibrium.

Reaction quotient Q

- The reaction quotient Q measures the relative amounts of reactants and products at a certain point in time.
- It is expressed with non-equilibrium concentrations of reactants and products.

$$aA + bB \rightleftharpoons cC + dD$$
$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Exercise: Outline the difference between the reaction quotient Q and the equilibrium constant *K*.

The reaction quotient Q is calculated using non-equilibrium concentrations of reactants and products. The equilibrium constant K is calculated using equilibrium concentrations of reactants and products.

Q, **K** and direction of reaction

- When the value of Q is equal to the value of K (Q = K) the reaction is at equilibrium.
- If the value of Q is lower than the value of K (Q < K) the concentration of products is lower than at equilibrium.
- The reaction will proceed to the right to increase the concentration of products and the value of Q until equilibrium is reached.
- If the value of Q is higher than the value of K (Q > K) the concentration of products is higher than at equilibrium.
- The reaction will proceed to the left to decrease the concentration of the products and the value of *Q* until equilibrium is reached.

Example 1: Calculate the value of Q when $[N_2]$ is 0.814 mol dm⁻³, $[H_2]$ is 0.422 and $[NH_3]$ is 0.372 mol dm⁻³.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $K = 6.09$ at 350 °C

$$Q = \frac{[0.372]^2}{[0.814][0.422]^3} = 2.26$$

Based on your calculation, predict in which direction the reaction will proceed to reach equilibrium and explain your answer.

 $Q < K_c$ so the reaction will proceed to the right to reach equilibrium.

Example 2: Calculate the value of Q when $[N_2]$ is 0.814 mol dm⁻³, $[H_2]$ is 0.523 and $[NH_3]$ is 1.32 mol dm⁻³.

N₂(g) + 3H₂(g) ≈ 2NH₃(g) K = 6.09 at 350 °C
$$Q = \frac{[1.32]^2}{[0.841][0.523]^3} = 14.5$$

 $Q > K_c$ – the reaction will proceed to the left to reach equilibrium.

Summary:

Q vs <i>K</i>	Direction of reaction
Q > <i>K</i>	Reaction proceeds to left (reactants side)
Q < <i>K</i>	Reaction proceeds to right (products side)
Q = K	No net change (reaction is at equilibrium)

Exercises:

1) The table below show non-equilibrium concentrations of reactions and products for the following reaction at 527 °C. The value of *K* for this reaction at 527 °C is 5.10.

Species	Concentration at time <i>t</i> (mol dm ⁻³)
CO(g)	0.15
H ₂ O(g)	0.25
H ₂ (g)	0.42
CO ₂ (g)	0.37

CO(g) +	$H_2O(g)$	\neq H ₂ (g)	$+ CO_{2}(g)$
(0)	2 (0)	2(0)	2.0/

Calculate the reaction quotient Q and predict in which direction the reaction will proceed to reach equilibrium.

Write expression for *Q*:

$$Q = \frac{[H_2][CO_2]}{[H_2O][CO]}$$

Input values into the expression (products in numerator, reactants in denominator)

$$Q = \frac{(0.42)(0.37)}{(0.25)(0.15)} = 4.1$$

The value of the reaction quotient Q is less than the value of K so the reaction will proceed to the right (products side), increasing the value of Q.

2) The table below shows non-equilibrium concentrations of reactions and products for the following reaction at 1000 °C. The value of *K* for this reaction at 1000 °C is 1.00×10^{-13} .

$$2HF(g) \rightleftharpoons H_2(g) + F_2(g)$$

Species	Concentration at time <i>t</i> (mol dm ⁻³)		
HF(g)	23.0		
H ₂ (g)	0.540		
F ₂ (g)	0.380		

Calculate the reaction quotient Q and predict in which direction the reaction will proceed to reach equilibrium.

Write expression for Q:

$$Q = \frac{[H_2] [F_2]}{[HF]^2}$$

Input values into the expression (products in numerator, reactants in denominator)

WWW.MSJCHEM.COM

$$Q = \frac{(0.540) (0.380)}{(23.0)^2} = 3.88 \times 10^{-4}$$

The value of the reaction quotient Q is greater than the value of K so the reaction will proceed to the left (reactants side), decreasing the value of Q.

Reactivity 2.3.6

Understandings:

• The equilibrium law is the basis for quantifying the composition of an equilibrium mixture.

Learning outcomes:

• Solve problems involving values of *K* and initial and equilibrium concentrations of the components of an equilibrium mixture.

Additional notes:

- When *K* is very small, the approximation [reactant]_{initial} ≈ [reactant]_{eqm} should be understood.
- The use of quadratic equations is not expected. Only homogeneous equilibria will be assessed.

Linking questions:

• Reactivity 3.1 How does the equilibrium law help us to determine the pH of a weak acid, weak base or a buffer solution?

Determining the value of K given the concentration of products and reactants at equilibrium

Example: Calculate the *K* for the reaction:

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

given the following equilibrium concentrations:

 $[H_2] = 0.61 \text{ mol } dm^{-3}$, $[CO_2] = 1.6 \text{ mol } dm^{-3}$, $[H_2O] = 1.1 \text{ mol } dm^{-3}$, $[CO] = 1.4 \text{ mol } dm^{-3}$

Write the expression for the K and plug in the equilibrium concentrations;

 $K = (1.1 \times 1.4) \div (0.61 \times 1.6) = 1.6$

Determining the value of K given the initial concentration of one species and the equilibrium concentration of another

Example: Before equilibrium is reached, a 1.00 dm^3 flask contains $0.350 \text{ mol of SO}_3(g)$ at 832° C. Determine the *K* for the reaction if 0.093 mol of oxygen is present at equilibrium.

$$2SO_3(g)$$
 $O_2(g)$ $2SO_2(g)$ Initial (mol dm⁻³) 0.350 0 0 Change (mol dm⁻³) -2×0.093 $+0.093$ $+2 \times 0.093$ Equilibrium (mol dm⁻³) 0.164 0.093 0.186

$$2SO_3(g) \rightleftharpoons O_2(g) + 2SO_2(g)$$

 $K = (0.093 \times 0.186^2) \div (0.164^2) = 0.12$

Calculating the equilibrium concentrations given the K for the reaction and initial concentrations

The *K* for the following reaction is 6.78 at a certain temperature. The initial concentrations of NO and SO₃ are both 0.0300 mol dm⁻³. Calculate the equilibrium concentration of each reactant.

	SO ₃ (g)	NO(g)	NO ₂ (g)	SO ₂ (g)
Initial (mol dm ⁻³)	0.0300	0.0300	0	0
Change	- <i>x</i>	- x	+ x	+ <i>x</i>
(mol dm ⁻³)				
Equilibrium	0.0300 - <i>x</i>	0.0300 - <i>x</i>	x	x
(mol dm ⁻³)				

 $SO_3(g) + NO(g) \rightleftharpoons NO_2(g) + SO_2(g)$

 $6.78 = (x^2) \div (0.0300 - x)^2$

take the square root of both sides.

 $2.60 = x \div (0.0300 - x)$ Solve for *x* x = 0.0217

 $[SO_3] = 0.0300 - 0.0217 = 0.00830 \text{ mol dm}^{-3}$

 $[NO] = 0.0300 - 0.0217 = 0.00830 \text{ mol dm}^{-3}$

 $[NO_2] = 0.0217 \text{ mol dm}^{-3}$

 $[SO_2] = 0.0217 \text{ mol dm}^{-3}$

Calculating equilibrium concentrations when K_c is very small

- In some chemical reactions, *K* is a small value, less than 1×10⁻³. In these reactions, the forward reaction barely proceeds, and the equilibrium mixture consists of mostly reactants.
- The change in the initial concentration of reactants is almost zero and the equilibrium concentrations of reactants are almost equal to their initial concentrations ([reactant]_{initial} ≈ [reactant]_{eqm}).

Example: The thermal decomposition of water has a *K* value of 7.3×10^{-18} at 1000 °C. If the initial concentration of H₂O is 0.10 mol dm⁻³, calculate the concentration of O₂ at equilibrium.

	2H ₂ O(g)	2H ₂ (g)	O ₂ (g)
Initial (mol dm ⁻³)	0.10	0	0
Change (mol dm ⁻³)	-2x	+ 2 <i>x</i>	+ <i>x</i>
Equilibrium (mol dm ⁻³)	0.10 - 2x	2 <i>x</i>	x

Because value of *K* is less than 1×10^{-3} , the equilibrium concentration of the H₂O is the same as the initial concentration ([reactant]_{initial} \approx [reactant]_{eqm}).

Solve for $x = 2.6 \times 10^{-7}$

Equilibrium concentration of $H_2 = 2x = 5.2 \times 10^{-7}$ mol dm⁻³

The assumption made in this example is that subtracting *x* from the initial concentration will not make a difference within the precision used (to 2 significant figures). In general, if the value of *K* is less than 1×10^{-3} , this assumption is valid.

Reactivity 2.3.7

Understandings:

• The equilibrium constant and Gibbs energy change, ΔG , can both be used to measure the position of an equilibrium reaction.

Learning outcomes:

• Calculations using the equation $\Delta G^{\ominus} = -RT \ln K$.

Additional notes:

• The equation is given in the data booklet.

Linking questions:

• Reactivity 1.4 How can Gibbs energy be used to explain which of the forward or backward reaction is favoured before reaching equilibrium?

Gibbs free energy and equilibrium

- A system not at equilibrium (where $Q \neq K$) will proceed spontaneously in the • direction necessary to reach equilibrium (where Q = K).
- As a reaction approaches equilibrium, the Gibbs free energy change, ΔG , becomes less negative and eventually reaches zero at equilibrium.
- The equilibrium position occurs where the free energy is at its minimum and • entropy is at its maximum.

Plots of free energy against extent of reaction

- The reaction proceeds spontaneously from either pure reactants or pure products to the equilibrium position where $\Delta G = 0$ and Q = K (shown by the green arrows).
- The reaction away from the equilibrium position is non-spontaneous (shown by • the red arrows).

Spontaneous reaction

Non-spontaneous reaction

For a spontaneous reaction, the equilibrium position lies further towards pure products meaning that at equilibrium [products] > [reactants] and K > 1.

 $G^{\ominus}(\text{products}) < G^{\ominus}(\text{reactants})$ so $\Delta G^{\ominus} < 0$ (spontaneous).

Extent of reaction

For a non-spontaneous reaction, the equilibrium position lies further towards pure reactants meaning that at equilibrium [reactants] > [products] and K < 1.

 $G^{\ominus}(\text{products}) > G^{\ominus}(\text{reactants})$ so $\Delta G \ominus > 0$ (non-spontaneous).

REACTIVITY 2.3 HL

WWW.MSJCHEM.COM

ΔG , Q versus K and direction of reaction

- If a system is not at equilibrium, ΔG and Q can be used to tell us in which direction the reaction will proceed to reach equilibrium.
- For a spontaneous reaction, ΔG is negative, Q < K and the reaction will proceed in the forward direction until equilibrium is reached.
- For a non-spontaneous reaction, ΔG is positive, Q > K and the reaction will proceed in the reverse direction until equilibrium is reached.

Summary:

	ΔG	Q versus K	Direction of reaction
Spontaneous reaction	$\Delta G < 0$	Q < K	Reaction proceeds to right
Non-spontaneous reaction	$\Delta G > 0$	Q > K	Reaction proceeds to left
Reaction at equilibrium	$\Delta G = 0$	Q = K	No net change

Relationship between $\Delta G \ominus$ and K

- The relationship between Δ*G*⊖ and *K* is given by the following equation which can be found in section one of the IB chemistry data booklet.
- In this equation, temperature is in kelvin and ΔG^{\ominus} in J mol⁻¹.
- R is the universal gas constant, 8.31 J K⁻¹ mol⁻¹.

$$\Delta G^{\ominus} = -RT \ln K$$

• This equation can be rearranged to solve for *K*.

$$K = e^{-\frac{\Delta G}{RT}}$$

Exercises:

1) Calculate the value of *K* at 298 K for a reaction given that $\Delta G^{\ominus} = -33.0$ kJ mol⁻¹

 $K = e^{-(-32960 \div (8.31 \times 298))}$ $K = e^{13.3}$ $K = 5.98 \times 10^5$

2) Calculate the ΔG^{\ominus} for a reaction given that the *K* is 45.6 at 298 K.

 $\Delta G^{\ominus} = -8.31 \times 298 \times \ln(45.6)$ $\Delta G^{\ominus} = -9.46 \text{ kJ mol}^{-1}$