Reactivity 3.1 HL

IB CHEMISTRY HL

25	16		6	2	25
		\pm			
$\begin{aligned} & \text { Manganese } \\ & 54.938045 \end{aligned}$	$\begin{aligned} & \text { Sulfur } \\ & 32.065 \end{aligned}$		$\begin{aligned} & \text { Carbon } \\ & 12.0107 \end{aligned}$	$\begin{gathered} \text { Helium } \\ 4.002602 \end{gathered}$	$\begin{aligned} & \text { Manganese } \\ & 54.938045 \end{aligned}$

Reactivity 3.1.9

Understandings:

- The pOH scale describes the $\left[\mathrm{OH}^{-}\right]$of a solution. $\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right] ;\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$

Learning outcomes:

- Interconvert $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ and pOH values.

Additional notes:

- The equations for pOH are given in the data booklet.

pOH scale

- The pOH scale gives a measure of the $\left[\mathrm{OH}^{-}\right]$ions in solution.

$$
\begin{gathered}
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \\
{\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}} \\
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}}
\end{gathered}
$$

- The pOH scale in inverse, which means the higher the $\left[\mathrm{OH}^{-}\right.$], lower the pOH value.
- The relationship between pH and pOH is:

$$
\mathrm{pH}+\mathrm{pOH}=14.00 \text { at } 298 \mathrm{~K}
$$

Exercises:

1) A solution has a pH of 2.90 at 298 K . Calculate the $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$and pOH .
2) A solution at 298 K has a $\left[\mathrm{H}^{+}\right]$of $4.60 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the $\left[\mathrm{OH}^{-}\right]$and pOH of the solution.

Reactivity 3.1.10

Understandings:

- The strengths of weak acids and bases are described by their $K_{\mathrm{a}}, K_{\mathrm{b}}, \mathrm{p} K_{\mathrm{a}}$ or $\mathrm{p} K_{\mathrm{b}}$ values.

Learning outcomes:

- Interpret the relative strengths of acids and bases from these data.

Acid dissociation constant, K_{a}

- K_{a} is an equilibrium constant that refers to the dissociation or ionisation of an acid.
- $\mathrm{H}_{2} \mathrm{O}$ is not included in the K_{a} expression as it is a constant.

$$
\begin{gathered}
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

- The magnitude of the K_{a} tells us the extent of dissociation and the strength of the acid.
- The larger the value of the K_{a}, the further the equilibrium position lies to the right and the stronger the acid.

Base dissociation constant, K_{b}

- K_{b} is an equilibrium constant that refers to the dissociation or ionisation of a base.

$$
\begin{gathered}
\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
K_{b}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{gathered}
$$

- The magnitude of the K_{b} tells us the extent of dissociation and the strength of the base.
- The larger the value of the K_{b}, the further the equilibrium position lies to the right, and the stronger the base.

Exercise: Write expressions for the K_{a} or K_{b} for the following reactions.

1) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
2) $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$\mathrm{p} K_{\mathrm{a}}$ and $\mathrm{p} K_{\mathrm{b}}$

$$
\begin{gathered}
\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}} \quad \mathrm{p} K_{b}=-\log _{10} K_{\mathrm{b}} \\
K_{\mathrm{a}}=10^{-\mathrm{p} K_{\mathrm{a}}} \quad K_{\mathrm{b}}=10^{-\mathrm{p} K_{\mathrm{b}}}
\end{gathered}
$$

- $\mathrm{p} K_{a}$ and $\mathrm{p} K_{\mathrm{b}}$ values are usually positive and have no units.
- A change in one unit of $\mathrm{p} K_{\mathrm{a}}$ or $\mathrm{p} K_{b}$ represents a ten-fold change in the value K_{a} or K_{b}.

K_{a} and $\mathrm{p} K_{\mathrm{a}}$

- K_{a} and $\mathrm{p} K_{a}$ have an inverse relationship; the stronger the acid, the higher the value of K_{a} and the lower the value of the $\mathrm{p} K_{\mathrm{a}}$.

K_{b} and $\mathrm{p} K_{\mathrm{b}}$

- K_{b} and $p K_{b}$ have an inverse relationship; the stronger the base, the higher the value of K_{b} and the lower the value of the $\mathrm{p} K_{\mathrm{b}}$.

Exercise: The following table shows $\mathrm{p} K_{a}$ and $\mathrm{p} K_{b}$ values for acids and bases. Identify the strongest acid and the strongest base from the table.

Acid	$\mathbf{p} \mathbf{K}_{\mathbf{a}}$	Base	$\mathbf{p} \mathbf{K}_{\mathbf{b}}$
Methanoic acid	3.75	Ammonia	4.75
Ethanoic acid	4.76	Methylamine	3.34

Reactivity 3.1.11

Understandings:

- For a conjugate acid-base pair, the relationship $K_{a} \times K_{b}=K_{w}$ can be derived from the expressions for K_{a} and K_{b}.

Learning outcomes:

- Solve problems involving these values.

Additional notes:

- The use of quadratic equations is not expected in calculations.

Linking questions:

- Reactivity 2.3 How can we simplify calculations when equilibrium constants K_{a} and K_{b} are very small?

Relationship between $K_{\mathrm{a}}, K_{\mathrm{b}}$ and K_{w}

$K_{\mathrm{a}} \times K_{b}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \times \frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$K_{w}=K_{a} \times K_{b}$

- For a conjugate acid-base pair, $K_{a} \times K_{b}=1.00 \times 10^{-14}$ at 298 K

Exercises:

1) The K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.74×10^{-5}. Determine the K_{b} for its conjugate base $\mathrm{CH}_{3} \mathrm{COO}^{-}$at 298 K .
2) The K_{b} of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is 7.41×10^{-10}. Determine the K_{a} for its conjugate acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$at 298 K .
3) The p_{b} of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is 3.34 . Determine the K_{a} for its conjugate acid $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$at 298 K.

Calculating K_{a} or K_{b} of a weak acid or weak base

Example 1: A $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HClO has a pH of 4.23. Calculate the K_{a} of HClO .

$$
\mathrm{HClO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})
$$

Example 2: A $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ has a pH of 8.79. Calculate the K_{b} of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Calculating the pH of a weak acid or weak base

Example 1: Propanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$, is a weak acid. Calculate the pH of a $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of propanoic acid at 298 K . The $\mathrm{p} K_{\mathrm{a}}$ of propanoic acid is 4.87 .

Example 2: Ammonia, NH_{3}, is a weak base. Calculate the pH of a $0.0250 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of ammonia at 298 K . The $\mathrm{p} K_{\mathrm{b}}$ of ammonia is 4.75 .

Reactivity 3.1.12

Understandings:

- The pH of a salt solution depends on the relative strengths of the parent acid and base.

Learning outcomes:

- Construct equations for the hydrolysis of ions in a salt and predict the effect of each ion on the pH of the salt solution.

Additional notes:

- Examples should include the ammonium ion, the carboxylate ion, the carbonate ion and the hydrogen carbonate ion.
- The acidity of hydrated transition element ions and $\mathrm{Al}^{3+}(\mathrm{aq})$ is not required.

Salt hydrolysis

- Salt hydrolysis is the reaction of a cation or an anion with water which ionises the water molecule into H^{+}and OH^{-}.
- This results in the formation of either an acidic solution or a basic solution.
- Anion hydrolysis results in a solution with $\mathrm{pH}>7$ due to the production of OH^{-} ions.

$$
\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- Cation hydrolysis results in a solution with $\mathrm{pH}<7$ due to the production of H^{+}ions.

$$
\mathrm{M}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{MOH}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

Salt of a strong acid and strong base

- The salt formed from a strong acid and a strong base has a pH of 7 at 298 K .
- Example - the reaction between HCl and NaOH produces NaCl which is a neutral salt.
- Neither ion $\left(\mathrm{Na}+\right.$ or $\left.\mathrm{Cl}^{-}\right)$is able to hydrolyse water.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Salt of a weak acid and strong base

- The salt formed from a weak acid and a strong base has a pH of >7 at 298 K .
- Example - the reaction between $\mathrm{CH}_{3} \mathrm{COOH}$ and NaOH produces $\mathrm{CH}_{3} \mathrm{COONa}$ which is a basic salt.
- The $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion is able to hydrolyse water resulting in the formation of OH^{-} ions.

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- The carbonate ion and hydrogen carbonate ion can also hydrolyse water to produce OH^{-}ions.

$$
\begin{gathered}
\mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered} \mathrm{H}_{2} \mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Salt of a strong acid and weak base

- The salt formed from a strong acid and a weak base has a pH of <7 at 298 K .
- Example - the reaction between HCl and NH_{3} produces $\mathrm{NH}_{4} \mathrm{Cl}$ which is an acidic salt.
- The $\mathrm{NH}_{4}{ }^{+}$ion is able to hydrolyse water resulting in the formation of H^{+}ions.

$$
\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

Exercise: Classify each of the following salts as acidic, basic or neutral, giving a reason for your choice. For each acidic or basic salt, write the equation for the hydrolysis reaction with water.

1) KBr
2) $\mathrm{CH}_{3} \mathrm{COONa}$
3) $\mathrm{NH}_{4} \mathrm{Cl}$
4) $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Reactivity 3.1.13

Understandings:

- pH curves of different combinations of strong and weak monoprotic acids and bases have characteristic shapes and features.

Learning outcomes:

- Interpret the general shapes of pH curves for all four combinations of strong and weak acids and bases.

Additional notes:

- Interpretation should include: intercept with the pH axis, equivalence point, buffer region, points where $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$ or $\mathrm{pOH}=\mathrm{p} K_{\mathrm{b}}$.

pH curves

- The equivalence point occurs when stoichiometrically equivalent amounts of acid and base have reacted (the solution contains only salt and water).
- The pH of the equivalence point depends on whether the salt produced is acidic or basic (salt hydrolysis).
- The end-point is the pH at which an indicators changes colour.
- The buffer region on a pH curve represents the region where small additions of acid or base result in little or no change in pH .

Addition of a strong base to a weak acid

For a weak acid and strong base pH curve, there is a buffer region where the solution is resisting a change in pH .
The equivalence point is at $\mathrm{pH}>7$.

Addition of a strong acid to a weak base

For a weak base and strong acid pH curve, there is a buffer region where the solution is resisting a change in pH .
The equivalence point is at $\mathrm{pH}<7$.

Addition of a weak acid to a weak base

Addition of a weak base to a weak acid

Half-equivalence point

- The half-equivalence point is the point where half the acid (or base) has been neutralised by base (or acid) and converted into salt.
- At the half-equivalence point, the pH is equal to the $\mathrm{p} K_{\mathrm{a}}$ and the pOH is equal to the $\mathrm{p} K_{b}$.

Addition of strong base to weak acid

Addition of strong acid to weak base

Reactivity 3.1.14 and 3.1.15

Understandings:

- Acid-base indicators are weak acids, where the components of the conjugate acid-base pair have different colours (3.1.14).
- The pH of the end point of an indicator, where it changes colour, approximately corresponds to its $\mathrm{p} K_{a}$ value (3.1.14).
- An appropriate indicator for a titration has an end point range that coincides with the pH at the equivalence point (3.1.15).

Learning outcomes:

- Construct equilibria expressions to show why the colour of an indicator changes with pH (3.1.14).
- Identify an appropriate indicator for a titration from the identity of the salt and the pH range of the indicator (3.1.15).

Additional notes:

- The generalised formula HInd(aq) can be used to represent the undissociated form of an indicator.
- Examples of indicators with their pH range are given in the data booklet.
- Include universal indicator as a mixture of many indicators with a wide pH range of colour change.
- Distinguish between the terms "end point" and "equivalence point".

Acid-base indicators

- Acid-base indicators are weak acids or bases in which the undissociated form (HInd) and the dissociated form (In^{-}) have different colours.
- Example - litmus appears red in an acidic solution and blue in an alkaline solution.

$$
\underset{\text { red }}{\mathrm{HInd}(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\underset{\text { blue }}{\operatorname{In}-(\mathrm{aq})}
$$

- In acidic solutions (high $\left[\mathrm{H}^{+}\right]$), the equilibrium position shifts to the left and the red colour is seen.
- In alkaline solutions (high $\left[\mathrm{OH}^{-}\right]$), the equilibrium position shifts to the right and the blue colour is seen.

End point

- The end point of an indicator is the pH at which it changes colour.
- An indicator changes colour when the pH is equal to its $\mathrm{p} K_{\mathrm{a}}$.
- The colour change can be considered to take place over a range of $\mathrm{p} K_{a} \pm 1$.
- A list of acid base indicators can be found in section 18 of the data booklet.

Exercises:

1) The indicator bromophenol blue, HInd(aq), has a form that is yellow and the $\mathrm{In}^{-}(\mathrm{aq})$ form that is blue.
(a) Write an equation to show how bromophenol blue acts as an indicator.
(b) State and explain the colour of bromophenol blue:
(i) on the addition of a strong acid.
(ii) on the addition of a strong base.
2) Use the pH curve to determine the following.
(a) the pH at the equivalence point
(b) the $\mathrm{p} K_{\mathrm{a}}$ of the weak acid
(c) a suitable indicator for the titration.

Reactivity 3.1.16

Understandings:

- A buffer solution is one that resists change in pH on the addition of small amounts of acid or alkali.

Learning outcomes:

- Describe the composition of acidic and basic buffers and explain their actions.

Linking question(s):

- Reactivity 2.3 Why must buffer solutions be composed of weak acid or base conjugate systems, not of strong acids or bases?

Buffer solutions

- Buffer solutions resist a change in pH when small amounts of acid or base are added.
- A buffer solution contains equal amounts of weak acid and conjugate base or weak base and conjugate acid.

Acidic buffers

- An acidic buffer solution can be prepared by reacting a weak acid with a strong base, ensuring that the resulting solution has equal amounts of weak acid and the salt of the weak acid and strong base.

$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$			
1.0 mol	0.50 mol	0 mol	0 mol
0.50 mol	0 mol	0.50 mol	0.50 mol

- An acidic buffer can also be made by mixing a weak acid and the salt of the weak acid and a strong base.

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) & \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \\
\mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq}) & \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
\end{aligned}
$$

- The resulting solution has equal amounts of weak acid, $\mathrm{CH}_{3} \mathrm{COOH}$, and its conjugate base $\mathrm{CH}_{3} \mathrm{COO}^{-}$.

Response to added acid

- The H^{+}ions react with $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions to form $\mathrm{CH}_{3} \mathrm{COOH}$.

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})
$$

Response to added base

- The OH^{-}ions react with $\mathrm{CH}_{3} \mathrm{COOH}$ to form $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Basic buffers

- A basic buffer solution can be prepared by reacting a weak base with a strong acid, ensuring that the resulting solution has equal amounts of weak base and the salt of the weak base and strong acid.

$$
\begin{aligned}
& \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NH} 4 \mathrm{Cl}(\mathrm{aq}) \\
& 1.0 \mathrm{~mol} \quad 0.50 \mathrm{~mol} \\
& 0.50 \mathrm{~mol} \\
& 0.5 \mathrm{~mol}
\end{aligned} 0.0 .50 \mathrm{~mol} \text {) }
$$

- A basic buffer can also be made by mixing a weak base and the salt of the weak base and a strong acid.

$$
\begin{gathered}
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
\end{gathered}
$$

- The resulting solution has equal amounts of weak base, NH_{3}, and its conjugate acid $\mathrm{NH}_{4}{ }^{+}$.

Response to added acid

- The H^{+}ions react with NH_{3} to form $\mathrm{NH}_{4}{ }^{+}$.

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})
$$

Response to added base

- The OH^{-}ions react with NH_{4}^{+}to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Reactivity 3.1.17

Understandings:

- The pH of a buffer solution depends on both:
the $\mathrm{p} K_{a}$ or $p K_{b}$ of its acid or base
the ratio of the concentration of acid or base to the concentration of the conjugate base or acid.

Learning outcomes:

- Solve problems involving the composition and pH of a buffer solution, using the equilibrium constant.

Additional information:

- Include explanation of the effect of dilution of a buffer.

Linking question(s):

- Reactivity 2.3 How does Le Châtelier's principle enable us to interpret the behaviour of indicators and buffer solutions?

