Reactivity 3.1 HL

IB CHEMISTRY HL

16 **S** Sulfur 32.065

J

6 C Carbon 12.0107 2 **He** Helium 4.002602 25 Manganese 54.938045

Understandings:

The pOH scale describes the [OH⁻] of a solution.
 pOH = -loq₁₀[OH⁻]; [OH⁻] = 10^{-pOH}

Learning outcomes:

• Interconvert [H+], [OH-], pH and pOH values.

Additional notes:

• The equations for pOH are given in the data booklet.

pOH scale

• The pOH scale gives a measure of the [OH-] ions in solution.

$$pH = -log_{10} [H^+]$$

 $[H^+] = 10^{-pH}$
 $pOH = -log_{10} [OH^-]$
 $[OH^-] = 10^{-pOH}$

- The pOH scale in inverse, which means the higher the [OH-], lower the pOH value.
- The relationship between pH and pOH is:

Exercises:

1) A solution has a pH of 2.90 at 298 K. Calculate the [H⁺], [OH⁻] and pOH.

2) A solution at 298 K has a [H⁺] of 4.60×10^{-8} mol dm⁻³. Calculate the [OH⁻] and pOH of the solution.

Understandings:

• The strengths of weak acids and bases are described by their K_a , K_b , pK_a or pK_b values.

Learning outcomes:

• Interpret the relative strengths of acids and bases from these data.

Acid dissociation constant, Ka

- K_a is an equilibrium constant that refers to the dissociation or ionisation of an acid.
- H₂O is not included in the K_a expression as it is a constant.

$$HA(aq) + H2O(I) \rightleftharpoons H3O+(aq) + A-(aq)$$

$$K_a = \frac{[H_3 O^+][A^-]}{[HA]}$$

- The magnitude of the K_a tells us the extent of dissociation and the strength of the acid.
- The larger the value of the K_a , the further the equilibrium position lies to the right and the stronger the acid.

Base dissociation constant, Kb

• K_b is an equilibrium constant that refers to the dissociation or ionisation of a base.

$$B(aq) + H_2O(I) \rightleftharpoons BH^+(aq) + OH^-(aq)$$

$$K_b = \frac{[\mathrm{BH}^+][\mathrm{OH}^-]}{[\mathrm{B}]}$$

- The magnitude of the K_b tells us the extent of dissociation and the strength of the base.
- The larger the value of the K_b , the further the equilibrium position lies to the right, and the stronger the base.

Exercise: Write expressions for the K_a or K_b for the following reactions.

1)
$$CH_3COOH(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$$

2)
$$NH_3(aq) + H_2O(1) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

pKa and pKb

$$pK_a = -log_{10}K_a$$
 $pK_b = -log_{10}K_b$ $K_a = 10^{-pK_a}$ $K_b = 10^{-pK_b}$

- pK_a and pK_b values are usually positive and have no units.
- A change in one unit of pK_a or pK_b represents a ten-fold change in the value K_a or K_b .

K_a and pK_a

• K_a and pK_a have an inverse relationship; the stronger the acid, the higher the value of K_a and the lower the value of the pK_a .

K_b and pK_b

• K_b and pK_b have an inverse relationship; the stronger the base, the higher the value of K_b and the lower the value of the pK_b .

Exercise: The following table shows pK_a and pK_b values for acids and bases. Identify the strongest acid and the strongest base from the table.

Acid	р <i>К</i> а	Base	p <i>K</i> ₀
Methanoic acid	3.75	Ammonia	4.75
Ethanoic acid	4.76	Methylamine	3.34

Understandings:

• For a conjugate acid–base pair, the relationship $K_a \times K_b = K_w$ can be derived from the expressions for K_a and K_b .

Learning outcomes:

• Solve problems involving these values.

Additional notes:

• The use of quadratic equations is not expected in calculations.

Linking questions:

Reactivity 2.3 How can we simplify calculations when equilibrium constants K_a and K_b are very small?

Relationship between K_a , K_b and K_w

$$K_a \times K_b = \frac{[H_3O^+][A^-]}{[HA]} \times \frac{[BH^+][OH^-]}{[B]} = [H^+][OH^-]$$

$$K_{w} = [H^{+}][OH^{-}]$$

$$K_W = K_a \times K_b$$

• For a conjugate acid-base pair, $K_a \times K_b = 1.00 \times 10^{-14}$ at 298 K

Exercises:

1) The K_a of CH₃COOH is 1.74 × 10⁻⁵. Determine the K_b for its conjugate base CH₃COO⁻ at 298 K.

2) The K_b of C₆H₅NH₂ is 7.41 × 10⁻¹⁰. Determine the K_a for its conjugate acid C₆H₅NH₃⁺ at 298 K.

3) The p K_b of CH₃NH₂ is 3.34. Determine the K_a for its conjugate acid CH₃NH₃⁺ at 298 K.

Calculating K_a or K_b of a weak acid or weak base

Example 1: A 0.100 mol dm⁻³ solution of HClO has a pH of 4.23. Calculate the K_a of HClO.

$$HCIO(aq) + H2O(I) \rightleftharpoons H3O+(aq) + CIO-(aq)$$

Example 2: A 0.100 mol dm⁻³ solution of $C_6H_5NH_2$ has a pH of 8.79. Calculate the K_b of $C_6H_5NH_2$.

$$C_6H_5NH_2(aq) + H_2O(I) \rightleftharpoons C_6H_5NH_3^+(aq) + OH^-(aq)$$

Calculating the pH of a weak acid or weak base

Example 1: Propanoic acid, CH₃CH₂COOH, is a weak acid. Calculate the pH of a 0.0500 mol dm⁻³ solution of propanoic acid at 298 K. The p*K*_a of propanoic acid is 4.87.

Example 2: Ammonia, NH₃, is a weak base. Calculate the pH of a 0.0250 mol dm⁻³ solution of ammonia at 298 K. The p K_b of ammonia is 4.75.

Understandings:

• The pH of a salt solution depends on the relative strengths of the parent acid and base.

Learning outcomes:

• Construct equations for the hydrolysis of ions in a salt and predict the effect of each ion on the pH of the salt solution.

Additional notes:

- Examples should include the ammonium ion, the carboxylate ion, the carbonate ion and the hydrogen carbonate ion.
- The acidity of hydrated transition element ions and Al3+(aq) is not required.

Salt hydrolysis

- Salt hydrolysis is the reaction of a cation or an anion with water which ionises the water molecule into H⁺ and OH⁻.
- This results in the formation of either an acidic solution or a basic solution.
- Anion hydrolysis results in a solution with pH > 7 due to the production of OHions.

$$A^{-}(aq) + H_2O(I) \rightarrow HA(aq) + OH^{-}(aq)$$

• Cation hydrolysis results in a solution with pH < 7 due to the production of H⁺ ions.

$$M^+(aq) + H_2O(I) \rightarrow MOH(aq) + H^+(aq)$$

Salt of a strong acid and strong base

- The salt formed from a strong acid and a strong base has a pH of 7 at 298 K.
- Example the reaction between HCl and NaOH produces NaCl which is a neutral salt.
- Neither ion (Na+ or Cl⁻) is able to hydrolyse water.

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H2O(I)$$

Salt of a weak acid and strong base

- The salt formed from a weak acid and a strong base has a pH of > 7 at 298 K.
- Example the reaction between CH₃COOH and NaOH produces CH₃COONa which is a basic salt.
- The CH₃COO⁻ ion is able to hydrolyse water resulting in the formation of OHions.

$$CH_3COO^-(aq) + H_2O(I) \rightleftharpoons CH_3COOH(aq) + OH^-(aq)$$

 The carbonate ion and hydrogen carbonate ion can also hydrolyse water to produce OH⁻ ions.

$$CO_3^{2-}(aq) + H_2O(I) \rightleftharpoons HCO_3^{-}(aq) + OH^{-}(aq)$$

 $HCO_3^{-}(aq) + H_2O(I) \rightleftharpoons H_2CO_3^{2-}(aq) + OH^{-}(aq)$

Salt of a strong acid and weak base

- The salt formed from a strong acid and a weak base has a pH of < 7 at 298 K.
- Example the reaction between HCl and NH₃ produces NH₄Cl which is an acidic salt.
- The NH₄⁺ ion is able to hydrolyse water resulting in the formation of H⁺ ions.

$$NH_4^+(aq) + H_2O(I) \rightleftharpoons NH_4OH(aq) + H^+(aq)$$

Exercise: Classify each of the following salts as acidic, basic or neutral, giving a reason for your choice. For each acidic or basic salt, write the equation for the hydrolysis reaction with water.

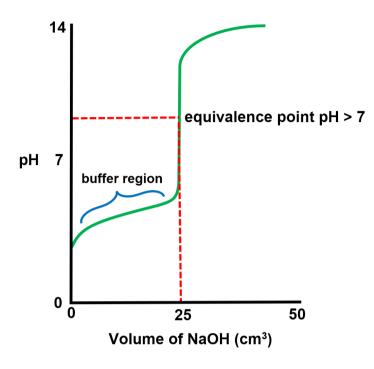
- 1) KBr
- 2) CH₃COONa
- 3) NH₄Cl
- 4) Na₂CO₃

Understandings:

• pH curves of different combinations of strong and weak monoprotic acids and bases have characteristic shapes and features.

Learning outcomes:

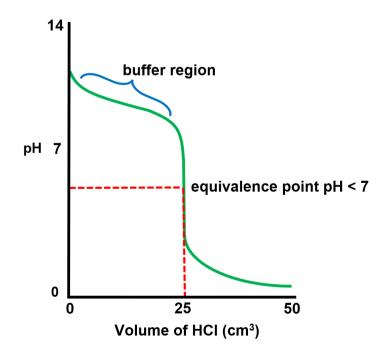
• Interpret the general shapes of pH curves for all four combinations of strong and weak acids and bases.


Additional notes:

• Interpretation should include: intercept with the pH axis, equivalence point, buffer region, points where pH = p K_a or pOH = p K_b .

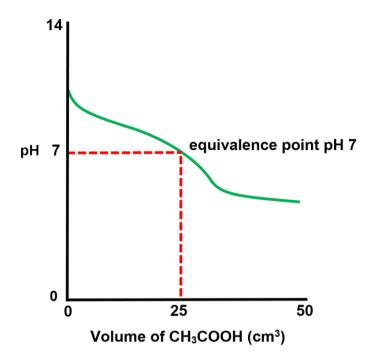
pH curves

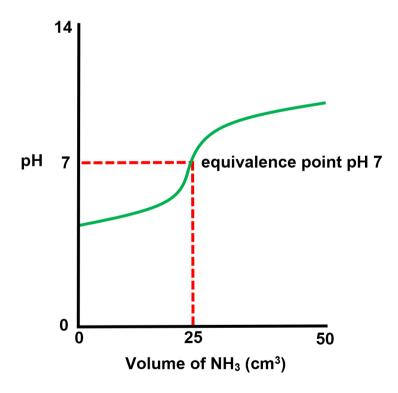
- The equivalence point occurs when stoichiometrically equivalent amounts of acid and base have reacted (the solution contains only salt and water).
- The pH of the equivalence point depends on whether the salt produced is acidic or basic (salt hydrolysis).
- The end-point is the pH at which an indicators changes colour.
- The buffer region on a pH curve represents the region where small additions of acid or base result in little or no change in pH.


Addition of a strong base to a weak acid

For a weak acid and strong base pH curve, there is a buffer region where the solution is resisting a change in pH.

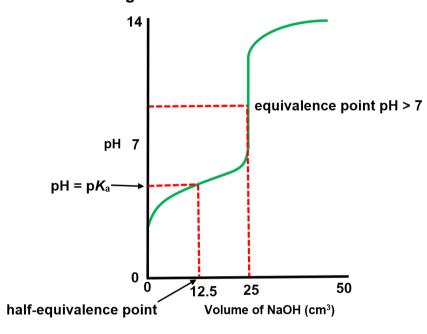
The equivalence point is at pH > 7.

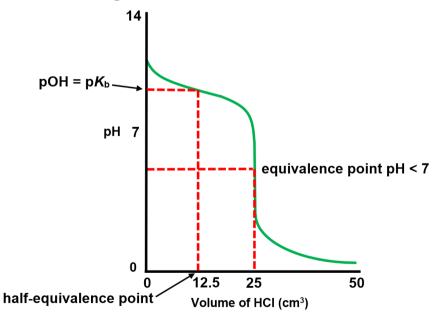

Addition of a strong acid to a weak base


For a weak base and strong acid pH curve, there is a buffer region where the solution is resisting a change in pH.

The equivalence point is at pH < 7.

Addition of a weak acid to a weak base


Addition of a weak base to a weak acid


Half-equivalence point

- The half-equivalence point is the point where half the acid (or base) has been neutralised by base (or acid) and converted into salt.
- At the half-equivalence point, the pH is equal to the p K_a and the pOH is equal to the p K_b .

Addition of strong base to weak acid

Addition of strong acid to weak base

Reactivity 3.1.14 and 3.1.15

Understandings:

- Acid-base indicators are weak acids, where the components of the conjugate acid-base pair have different colours (3.1.14).
- The pH of the end point of an indicator, where it changes colour, approximately corresponds to its p K_a value (3.1.14).
- An appropriate indicator for a titration has an end point range that coincides with the pH at the equivalence point (3.1.15).

Learning outcomes:

- Construct equilibria expressions to show why the colour of an indicator changes with pH (3.1.14).
- Identify an appropriate indicator for a titration from the identity of the salt and the pH range of the indicator (3.1.15).

Additional notes:

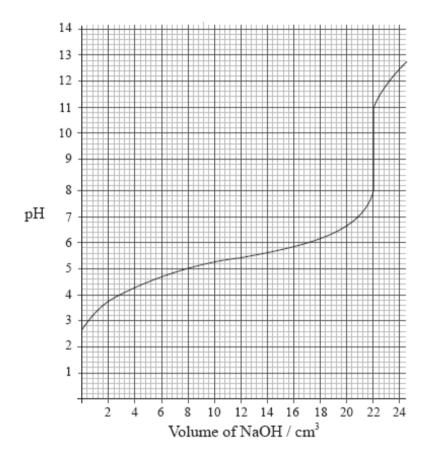
- The generalised formula HInd(aq) can be used to represent the undissociated form of an indicator.
- Examples of indicators with their pH range are given in the data booklet.
- Include universal indicator as a mixture of many indicators with a wide pH range of colour change.
- Distinguish between the terms "end point" and "equivalence point".

Acid-base indicators

- Acid-base indicators are weak acids or bases in which the undissociated form (HInd) and the dissociated form (In⁻) have different colours.
- Example litmus appears red in an acidic solution and blue in an alkaline solution.

$$HInd(aq) \rightleftharpoons H^+(aq) + In^-(aq)$$

- In acidic solutions (high [H⁺]), the equilibrium position shifts to the left and the red colour is seen.
- In alkaline solutions (high [OH⁻]), the equilibrium position shifts to the right and the blue colour is seen.


End point

- The end point of an indicator is the pH at which it changes colour.
- An indicator changes colour when the pH is equal to its p K_a .
- The colour change can be considered to take place over a range of p $K_a \pm 1$.
- A list of acid base indicators can be found in section 18 of the data booklet.

Exercises:

- 1) The indicator bromophenol blue, HInd(aq), has a form that is yellow and the In⁻(aq) form that is blue.
- (a) Write an equation to show how bromophenol blue acts as an indicator.
- **(b)** State and explain the colour of bromophenol blue:
- (i) on the addition of a strong acid.
- (ii) on the addition of a strong base.

- 2) Use the pH curve to determine the following.
- (a) the pH at the equivalence point
- (b) the pK_a of the weak acid
- (c) a suitable indicator for the titration.

Understandings:

• A buffer solution is one that resists change in pH on the addition of small amounts of acid or alkali.

Learning outcomes:

• Describe the composition of acidic and basic buffers and explain their actions.

Linking question(s):

• Reactivity 2.3 Why must buffer solutions be composed of weak acid or base conjugate systems, not of strong acids or bases?

Buffer solutions

- Buffer solutions resist a change in pH when small amounts of acid or base are added.
- A buffer solution contains equal amounts of weak acid and conjugate base or weak base and conjugate acid.

Acidic buffers

• An acidic buffer solution can be prepared by reacting a weak acid with a strong base, ensuring that the resulting solution has equal amounts of weak acid and the salt of the weak acid and strong base.

CH₃COOH(aq) + NaOH(aq)
$$\rightarrow$$
 CH₃COONa(aq) + H₂O(I)
1.0 mol 0.50 mol 0 mol 0 mol 0.50 mol 0.50 mol

 An acidic buffer can also be made by mixing a weak acid and the salt of the weak acid and a strong base.

$$CH_3COOH(aq) \rightleftharpoons CH_3COO^-(aq) + H^+(aq)$$

 $CH_3COONa(aq) \rightarrow Na^+(aq) + CH_3COO^-(aq)$

• The resulting solution has equal amounts of weak acid, CH₃COOH, and its conjugate base CH₃COO⁻.

Response to added acid

The H⁺ ions react with CH₃COO⁻ ions to form CH₃COOH.

$$CH_3COO^-(aq) + H^+(aq) \rightleftharpoons CH_3COOH(aq)$$

Response to added base

The OH⁻ ions react with CH₃COOH to form CH₃COO⁻ and H₂O.

$$CH_3COOH(aq) + OH^-(aq) \rightleftharpoons CH_3COO^-(aq) + H_2O(I)$$

Basic buffers

• A basic buffer solution can be prepared by reacting a weak base with a strong acid, ensuring that the resulting solution has equal amounts of weak base and the salt of the weak base and strong acid.

$$NH_3(aq) + HCI(aq) \rightarrow NH_4CI(aq)$$

1.0 mol 0.50 mol 0 mol 0.50 mol 0.50 mol

 A basic buffer can also be made by mixing a weak base and the salt of the weak base and a strong acid.

$$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

 $NH_4CI(aq) \rightarrow NH_4^+(aq) + CI^-(aq)$

 The resulting solution has equal amounts of weak base, NH₃, and its conjugate acid NH₄⁺.

Response to added acid

• The H⁺ ions react with NH₃ to form NH₄⁺.

$$NH_3(aq) + H^+(aq) \rightleftharpoons NH_4^+(aq)$$

Response to added base

• The OH⁻ ions react with NH₄⁺ to form NH₃ and H₂O.

$$NH_4^+(aq) + OH^-(aq) \rightleftharpoons NH_3(aq) + H_2O(1)$$

Understandings:

The pH of a buffer solution depends on both:
 the pK_a or pK_b of its acid or base
 the ratio of the concentration of acid or base to the concentration of the conjugate base or acid.

Learning outcomes:

• Solve problems involving the composition and pH of a buffer solution, using the equilibrium constant.

Additional information:

• Include explanation of the effect of dilution of a buffer.

Linking question(s):

• Reactivity 2.3 How does Le Châtelier's principle enable us to interpret the behaviour of indicators and buffer solutions?