Reactivity 3.1 HL Answers

IB CHEMISTRY HL

Understandings:

The pOH scale describes the [OH⁻] of a solution.
 pOH = -log₁₀[OH⁻]; [OH⁻] = 10^{-pOH}

Learning outcomes:

• Interconvert [H⁺], [OH⁻], pH and pOH values.

Additional notes:

• The equations for pOH are given in the data booklet.

pOH scale

• The pOH scale gives a measure of the [OH⁻] ions in solution.

$$pH = -log_{10} [H^+]$$
$$[H^+] = 10^{-pH}$$
$$pOH = -log_{10} [OH^-]$$
$$[OH^-] = 10^{-pOH}$$

- The pOH scale in inverse, which means the higher the [OH⁻], lower the pOH value.
- The relationship between pH and pOH is:

Exercises:

1) A solution has a pH of 2.90 at 298 K. Calculate the $[H^+]$, $[OH^-]$ and pOH.

 $\begin{array}{l} [\mathsf{H}^+] = 10^{-2.90} = 1.26 \times 10^{-3} \\ [\mathsf{OH}^-] = 1.00 \times 10^{-14} \, / \, 1.26 \times 10^{-3} = 7.94 \times 10^{-12} \\ \mathsf{pOH} = -\mathsf{log} \; (7.94 \times 10^{-12}) = 11.1 \; \mathsf{or} \; 14.0 - 2.90 = 11.1 \end{array}$

2) A solution at 298 K has a [H⁺] of 4.60 × 10⁻⁸ mol dm⁻³. Calculate the [OH⁻] and pOH of the solution.

 $\begin{array}{l} [OH^{-}] = 1.00 \times 10^{-14} \, / \, 4.60 \times 10^{-8} = 2.17 \times 10^{-7} \\ pOH = -log \, (2.17 \times 10^{-7}) = 6.66 \end{array}$

Understandings:

• The strengths of weak acids and bases are described by their *K*_a, *K*_b, p*K*_a or p*K*_b values.

Learning outcomes:

• Interpret the relative strengths of acids and bases from these data.

Acid dissociation constant, Ka

- K_a is an equilibrium constant that refers to the dissociation or ionisation of an acid.
- H_2O is not included in the K_a expression as it is a constant.

$$HA(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

$$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{A}^-]}{[\mathrm{H}\mathrm{A}]}$$

- The magnitude of the K_a tells us the extent of dissociation and the strength of the acid.
- The larger the value of the K_{a} , the further the equilibrium position lies to the right and the stronger the acid.

Base dissociation constant, Kb

• K_b is an equilibrium constant that refers to the dissociation or ionisation of a base.

B(aq) + H₂O(I)
$$\rightleftharpoons$$
 BH⁺(aq) + OH⁻(aq)
$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

- The magnitude of the K_b tells us the extent of dissociation and the strength of the base.
- The larger the value of the K_b , the further the equilibrium position lies to the right, and the stronger the base.

Exercise: Write expressions for the K_a or K_b for the following reactions.

1) $CH_3COOH(aq) + H_2O(l) \Rightarrow H_3O^+(aq) + CH_3COO^-(aq)$

$$K_{a} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{CH}_{3}\mathrm{COO}^{-}]}{[\mathrm{CH}_{3}\mathrm{COOH}]}$$

2) $NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

$$K_{\rm b} = \frac{[\rm NH_4^+][\rm OH^-]}{[\rm NH_3]}$$

REACTIVITY 3.1 HL

p*K*_a and p*K*_b

 $pK_a = -\log_{10}K_a \qquad pK_b = -\log_{10}K_b$

 $K_{\rm a} = 10^{-pK_{\rm a}}$ $K_{\rm b} = 10^{-pK_{\rm b}}$

- pK_a and pK_b values are usually positive and have no units.
- A change in one unit of pK_a or pK_b represents a ten-fold change in the value K_a or K_b .

K_a and pK_a

• K_a and pK_a have an inverse relationship; the stronger the acid, the higher the value of K_a and the lower the value of the pK_a .

*K*_b and p*K*_b

• K_b and pK_b have an inverse relationship; the stronger the base, the higher the value of K_b and the lower the value of the pK_b .

Exercise: The following table shows pK_a and pK_b values for acids and bases. Identify the strongest acid and the strongest base from the table.

Acid	р <i>К</i> а	Base	р <i>К</i> ь
Methanoic acid	3.75	Ammonia	4.75
Ethanoic acid	4.76	Methylamine	3.34

Strongest acid is methanoic acid as it has the lowest value for the pK_a . Strongest base is methylamine as it has the lowest value for the pK_b .

Understandings:

• For a conjugate acid–base pair, the relationship $K_a \times K_b = K_w$ can be derived from the expressions for K_a and K_b .

Learning outcomes:

• Solve problems involving these values.

Additional notes:

• The use of quadratic equations is not expected in calculations.

Linking questions:

• Reactivity 2.3 How can we simplify calculations when equilibrium constants K_a and K_b are very small?

Relationship between Ka, Kb and Kw

$$K_{a} \times K_{b} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \times \frac{[BH^{+}][OH^{-}]}{[B]} = [H^{+}][OH^{-}]$$

 $K_{w} = [H^+][OH^-]$

 $K_{\rm W} = K_{\rm a} \times K_{\rm b}$

• For a conjugate acid-base pair, $K_a \times K_b = 1.00 \times 10^{-14}$ at 298 K

Exercises:

1) The K_a of CH₃COOH is 1.74×10^{-5} . Determine the K_b for its conjugate base CH₃COO⁻ at 298 K.

$$K_{\rm b} = \frac{1.00 \times 10^{-14}}{1.74 \times 10^{-5}} = 5.75 \times 10^{-10}$$

2) The K_b of C₆H₅NH₂ is 7.41 × 10⁻¹⁰. Determine the K_a for its conjugate acid C₆H₅NH₃⁺ at 298 K.

$$K_a = \frac{1.00 \times 10^{-14}}{7.41 \times 10^{-10}} = 1.35 \times 10^{-5}$$

3) The p K_b of CH₃NH₂ is 3.34. Determine the K_a for its conjugate acid CH₃NH₃⁺ at 298 K.

$$K_{\rm b} = 10^{-3.34} = 4.57 \times 10^{-4}$$

$$K_{\rm a} = \frac{1.00 \times 10^{-14}}{4.57 \times 10^{-4}} = 2.19 \times 10^{-11}$$

WWW.MSJCHEM.COM

REACTIVITY 3.1 HL

Calculating K_a or K_b of a weak acid or weak base

Example 1: A 0.100 mol dm⁻³ solution of HClO has a pH of 4.23. Calculate the K_a of HClO.

$$HCIO(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CIO^-(aq)$$

 $\mathrm{HCIO}_{(\mathrm{aq})} + \mathrm{H}_{2}\mathrm{O}_{(\mathrm{I})} \rightleftharpoons \mathrm{H}_{3}\mathrm{O}^{+}_{(\mathrm{aq})} + \mathrm{CIO}^{-}_{(\mathrm{aq})}$

$$K_{\rm a} = \frac{[\rm H_3O^+][\rm ClO^-]}{[\rm HClO]}$$

[H⁺] = 10^{-pH} [H⁺] = 10^{-4.23} [H⁺] = 5.89 × 10⁻⁵ mol dm⁻³

$$K_{\rm a} = \frac{(5.89 \times 10^{-5})^2}{0.100} \qquad \qquad K_{\rm a} = \frac{(5.89 \times 10^{-5})^2}{(0.100 - 5.89 \times 10^{-5})}$$

 $K_{\rm a} = 3.47 \times 10^{-8}$

Example 2: A 0.100 mol dm⁻³ solution of C₆H₅NH₂ has a pH of 8.79. Calculate the K_b of C₆H₅NH₂.

$$C_6H_5NH_2(aq) + H_2O(I) \rightleftharpoons C_6H_5NH_3^+(aq) + OH^-(aq)$$

 $\mathbf{C_6H_5NH_{2(aq)}+H_2O_{(l)}}\rightleftharpoons \mathbf{C_6H_5NH_3^+_{(aq)}+OH^-_{(aq)}}$

$$K_{\rm b} = \frac{[{\rm C}_{6}{\rm H}_{5}{\rm N}{\rm H}_{3}^{+}][{\rm O}{\rm H}^{-}]}{[{\rm C}_{6}{\rm H}_{5}{\rm N}{\rm H}_{2}]}$$

pH + pOH = 14.00 (at 298 K) pOH = 14.00 - 8.79 = 5.21 [OH⁻] = 10^{-5.21} [OH⁻] = 6.17 × 10⁻⁶ mol dm⁻³

$$K_{b} = \frac{[C_{6}H_{5}NH_{3}^{+}][OH^{-}]}{[C_{6}H_{5}NH_{2}]}$$

$$K_{b} = \frac{(6.17 \times 10^{-6})^{2}}{0.100} \qquad K_{b} = \frac{(6.17 \times 10^{-6})^{2}}{(0.100 - 6.17 \times 10^{-6})}$$

 $K_{\rm b} = 3.81 \times 10^{-10}$

REACTIVITY 3.1 HL

Calculating the pH of a weak acid or weak base

Example 1: Propanoic acid, CH_3CH_2COOH , is a weak acid. Calculate the pH of a 0.0500 mol dm⁻³ solution of propanoic acid at 298 K. The p K_a of propanoic acid is 4.87.

 $CH_3CH_2COOH(aq) \rightleftharpoons CH_3CH_2COO^{-}(aq) + H^{+}(aq)$

 $K_{a} = \frac{[CH_{3}CH_{2}COO^{-}][H^{+}]}{[CH_{3}CH_{2}COOH]}$ $K_{a} = 10^{-pKa}$ $K_{a} = 10^{-4.87}$ $K_{a} = 1.35 \times 10^{-5}$ $[H^{+}] = \sqrt{K_{a}[CH_{3}CH_{2}COOH]}$

 $[H^+] = 8.21 \text{ or } 8.22 \times 10^{-4} \text{ mol } \text{dm}^{-3}$

 $pH = -log [H^+] = -log (8.22 \times 10^{-4}) = 3.1 \text{ or } 3.09$

Example 2: Ammonia, NH₃, is a weak base. Calculate the pH of a 0.0250 mol dm⁻³ solution of ammonia at 298 K. The p K_b of ammonia is 4.75. NH₃(aq) + H₂O(I) \rightleftharpoons NH₄⁺(aq) + OH⁻(aq)

 $K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$ $[OH^{-}] = 2.1 \times 10^{-3}$ $pOH = 2.7 / [H^{+}] = 4.8 \times 10^{-12}$ pH = 11.3

Understandings:

• The pH of a salt solution depends on the relative strengths of the parent acid and base.

Learning outcomes:

• Construct equations for the hydrolysis of ions in a salt and predict the effect of each ion on the pH of the salt solution.

Additional notes:

- Examples should include the ammonium ion, the carboxylate ion, the carbonate ion and the hydrogen carbonate ion.
- The acidity of hydrated transition element ions and Al³⁺(aq) is not required.

Salt hydrolysis

- Salt hydrolysis is the reaction of a cation or an anion with water which ionises the water molecule into H⁺ and OH⁻.
- This results in the formation of either an acidic solution or a basic solution.
- Anion hydrolysis results in a solution with pH > 7 due to the production of OH⁻ ions.

$$A^{-}(aq) + H_2O(I) \rightarrow HA(aq) + OH^{-}(aq)$$

• Cation hydrolysis results in a solution with pH < 7 due to the production of H^+ ions.

$$M^+(aq) + H_2O(I) \rightarrow MOH(aq) + H^+(aq)$$

Salt of a strong acid and strong base

- The salt formed from a strong acid and a strong base has a pH of 7 at 298 K.
- Example the reaction between HCI and NaOH produces NaCI which is a neutral salt.
- Neither ion (Na+ or Cl⁻) is able to hydrolyse water.

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$$

Salt of a weak acid and strong base

- The salt formed from a weak acid and a strong base has a pH of > 7 at 298 K.
- Example the reaction between CH₃COOH and NaOH produces CH₃COONa which is a basic salt.
- The CH₃COO⁻ ion is able to hydrolyse water resulting in the formation of OH⁻ ions.

 $CH_3COO^{-}(aq) + H_2O(I) \rightleftharpoons CH_3COOH(aq) + OH^{-}(aq)$

• The carbonate ion and hydrogen carbonate ion can also hydrolyse water to produce OH⁻ ions.

 $CO_3^{2-}(aq) + H_2O(I) \rightleftharpoons HCO_3^{-}(aq) + OH^{-}(aq)$

 $HCO_3^{-}(aq) + H_2O(I) \rightleftharpoons H_2CO_3^{2-}(aq) + OH^{-}(aq)$

Salt of a strong acid and weak base

- The salt formed from a strong acid and a weak base has a pH of < 7 at 298 K.
- Example the reaction between HCI and NH₃ produces NH₄CI which is an acidic salt.
- The NH_{4^+} ion is able to hydrolyse water resulting in the formation of H^+ ions.

$$NH_4^+(aq) + H_2O(I) \rightleftharpoons NH_4OH(aq) + H^+(aq)$$

Exercise: Classify each of the following salts as acidic, basic or neutral, giving a reason for your choice. For each acidic or basic salt, write the equation for the hydrolysis reaction with water.

1) KBr

Neutral, pH = 7

2) CH₃COONa

Basic, pH > 7 CH₃COO⁻(aq) + H₂O(I) \rightleftharpoons CH₃COOH(aq) + OH⁻(aq)

3) NH₄Cl

Acidic, pH < 7

 $NH_4^+(aq) + H_2O(I) \rightleftharpoons NH_4OH(aq) + H^+(aq)$

4) Na₂CO₃

Basic, pH > 7 $CO_3^{2-}(aq) + H_2O(I) \rightleftharpoons HCO_3^{-}(aq) + OH^{-}(aq)$

Understandings:

• pH curves of different combinations of strong and weak monoprotic acids and bases have characteristic shapes and features.

Learning outcomes:

• Interpret the general shapes of pH curves for all four combinations of strong and weak acids and bases.

Additional notes:

• Interpretation should include: intercept with the pH axis, equivalence point, buffer region, points where $pH = pK_a$ or $pOH = pK_b$.

pH curves

- The equivalence point occurs when stoichiometrically equivalent amounts of acid and base have reacted (the solution contains only salt and water).
- The pH of the equivalence point depends on whether the salt produced is acidic or basic (salt hydrolysis).
- The end-point is the pH at which an indicators changes colour.
- The buffer region on a pH curve represents the region where small additions of acid or base result in little or no change in pH.

REACTIVITY 3.1 HL

Addition of a strong base to a weak acid

For a weak acid and strong base pH curve, there is a buffer region where the solution is resisting a change in pH. The equivalence point is at pH > 7.

Addition of a strong acid to a weak base

For a weak base and strong acid pH curve, there is a buffer region where the solution is resisting a change in pH. The equivalence point is at pH < 7.

REACTIVITY 3.1 HL

Addition of a weak acid to a weak base

Addition of a weak base to a weak acid

REACTIVITY 3.1 HL

Half-equivalence point

- The half-equivalence point is the point where half the acid (or base) has been neutralised by base (or acid) and converted into salt.
- At the half-equivalence point, the pH is equal to the pK_a and the pOH is equal to the pK_b .

Addition of strong acid to weak base

REACTIVITY 3.1 HL

Reactivity 3.1.14 and 3.1.15

Understandings:

- Acid–base indicators are weak acids, where the components of the conjugate acid–base pair have different colours (3.1.14).
- The pH of the end point of an indicator, where it changes colour, approximately corresponds to its pK_a value (3.1.14).
- An appropriate indicator for a titration has an end point range that coincides with the pH at the equivalence point (3.1.15).

Learning outcomes:

- Construct equilibria expressions to show why the colour of an indicator changes with pH (3.1.14).
- Identify an appropriate indicator for a titration from the identity of the salt and the pH range of the indicator (3.1.15).

Additional notes:

- The generalised formula HInd(aq) can be used to represent the undissociated form of an indicator.
- Examples of indicators with their pH range are given in the data booklet.
- Include universal indicator as a mixture of many indicators with a wide pH range of colour change.
- Distinguish between the terms "end point" and "equivalence point".

Acid-base indicators

- Acid-base indicators are weak acids or bases in which the undissociated form (HInd) and the dissociated form (In⁻) have different colours.
- Example litmus appears red in an acidic solution and blue in an alkaline solution.

- In acidic solutions (high [H⁺]), the equilibrium position shifts to the left and the red colour is seen.
- In alkaline solutions (high [OH⁻]), the equilibrium position shifts to the right and the blue colour is seen.

End point

- The end point of an indicator is the pH at which it changes colour.
- An indicator changes colour when the pH is equal to its pK_{a} .
- The colour change can be considered to take place over a range of $pK_a \pm 1$.
- A list of acid base indicators can be found in section 18 of the data booklet.

Exercises:

- **1)** The indicator bromophenol blue, HInd(aq), has a form that is yellow and the In⁻(aq) form that is blue.
- (a) Write an equation to show how bromophenol blue acts as an indicator.

 $HInd(aq) \rightleftharpoons H^+(aq) + In^-(aq)$

- (b) State and explain the colour of bromophenol blue:
- (i) on the addition of a strong acid.

Addition of H⁺, equilibrium position shifts to left, yellow colour is seen.

(ii) on the addition of a strong base.

Addition of OH⁻, equilibrium position shifts to right, blue colour is seen.

- 2) Use the pH curve to determine the following.
- (a) the pH at the equivalence point. pH 9.5
- (b) the p K_a of the weak acid. At 11 cm³, pH = 5.4, p K_a = 5.4
- (c) a suitable indicator for the titration. Phenolphthalein (pH range 8.3 10.0)

Understandings:

• A buffer solution is one that resists change in pH on the addition of small amounts of acid or alkali.

Learning outcomes:

• Describe the composition of acidic and basic buffers and explain their actions.

Linking question(s):

• Reactivity 2.3 Why must buffer solutions be composed of weak acid or base conjugate systems, not of strong acids or bases?

Buffer solutions

- Buffer solutions resist a change in pH when small amounts of acid or base are added.
- A buffer solution contains equal amounts of weak acid and conjugate base or weak base and conjugate acid.

Acidic buffers

• An acidic buffer solution can be prepared by reacting a weak acid with a strong base, ensuring that the resulting solution has equal amounts of weak acid and the salt of the weak acid and strong base.

$CH_{3}COOH(aq) + NaOH(aq) \rightarrow CH_{3}COONa(aq) + H_{2}O(I)$				
1.0 mol	0.50 mol	0 mol	0 mol	
0.50 mol	0 mol	0.50 mol	0.50 mol	

• An acidic buffer can also be made by mixing a weak acid and the salt of the weak acid and a strong base.

 $CH_3COOH(aq) \rightleftharpoons CH_3COO^{-}(aq) + H^{+}(aq)$

 $CH_3COONa(aq) \rightarrow Na^+(aq) + CH_3COO^-(aq)$

• The resulting solution has equal amounts of weak acid, CH₃COOH, and its conjugate base CH₃COO⁻.

Response to added acid

• The H⁺ ions react with CH₃COO⁻ ions to form CH₃COOH.

 $CH_3COO^{-}(aq) + H^{+}(aq) \rightleftharpoons CH_3COOH(aq)$

Response to added base

• The OH⁻ ions react with CH₃COOH to form CH₃COO⁻ and H₂O.

 $CH_3COOH(aq) + OH^-(aq) \Rightarrow CH_3COO^-(aq) + H_2O(I)$

Basic buffers

• A basic buffer solution can be prepared by reacting a weak base with a strong acid, ensuring that the resulting solution has equal amounts of weak base and the salt of the weak base and strong acid.

 $\begin{array}{ll} \mathsf{NH}_3(\mathsf{aq}) + \mathsf{HCI}(\mathsf{aq}) \to \mathsf{NH}_4\mathsf{CI}(\mathsf{aq}) \\ 1.0 \mbox{ mol } 0.50 \mbox{ mol } 0 \mbox{ mol } 0 \\ 0.50 \mbox{ mol } 0 \mbox{ mol } 0.50 \mbox{ mol } 0 \end{array}$

• A basic buffer can also be made by mixing a weak base and the salt of the weak base and a strong acid.

 $\begin{aligned} \mathsf{NH}_3(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) &\rightleftharpoons \mathsf{NH}_4^+(\mathsf{aq}) + \mathsf{OH}^-(\mathsf{aq}) \\ \mathsf{NH}_4\mathsf{CI}(\mathsf{aq}) &\to \mathsf{NH}_4^+(\mathsf{aq}) + \mathsf{CI}^-(\mathsf{aq}) \end{aligned}$

• The resulting solution has equal amounts of weak base, NH₃, and its conjugate acid NH₄⁺.

Response to added acid

• The H⁺ ions react with NH_3 to form NH_4^+ .

$$NH_3(aq) + H^+(aq) \rightleftharpoons NH_4^+(aq)$$

Response to added base

• The OH⁻ ions react with NH_{4^+} to form NH_3 and H_2O .

 $NH_4^+(aq) + OH^-(aq) \rightleftharpoons NH_3(aq) + H_2O(I)$

Understandings:

 The pH of a buffer solution depends on both: the pKa or pKb of its acid or base the ratio of the concentration of acid or base to the concentration of the conjugate base or acid.

Learning outcomes:

• Solve problems involving the composition and pH of a buffer solution, using the equilibrium constant.

Additional information:

• Include explanation of the effect of dilution of a buffer.

Linking question(s):

• Reactivity 2.3 How does Le Châtelier's principle enable us to interpret the behaviour of indicators and buffer solutions?