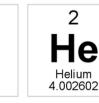
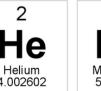

Reactivity 3.2 HL Answers

IB CHEMISTRY HL





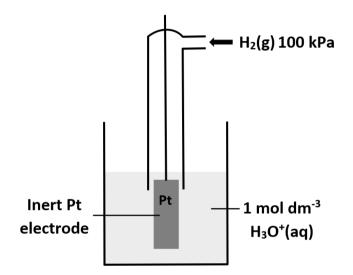
J

6 C

Understandings:

The hydrogen half-cell H₂(g)
⇒ 2H⁺(aq) + 2e⁻ is assigned a standard electrode potential of zero by convention. It is used in the measurement of standard electrode potentials, *E*⊖.

Learning outcomes:


• Interpret standard electrode potential data in terms of ease of oxidation/reduction.

Additional notes:

• Standard electrode potentials are given in the data booklet.

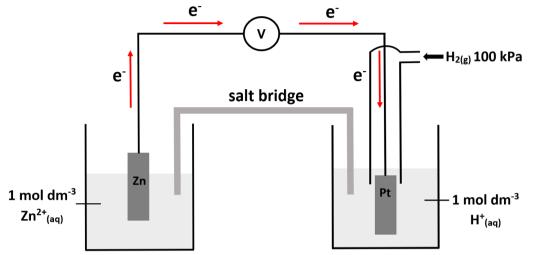
Hydrogen half-cell

- The hydrogen half-cell, also known as the standard hydrogen electrode (SHE), is a reference electrode used to measure the standard electrode potentials, *E*⊖, of other half-cells.
- The hydrogen half-cell is assigned a standard electrode potential (E^{\ominus}) of 0 V.
- The conditions of the hydrogen half-cell are:
 - Hydrogen gas (H₂) at a pressure of 100 kPa
 - A temperature of 298 K
 - A 1.0 mol dm⁻³ of H⁺ ions
 - An inert platinum electrode

• Depending on which half-cell is connected to the hydrogen half-cell, hydrogen ions are reduced to form hydrogen gas, or hydrogen gas is oxidised to form hydrogen ions.

 $2H^+(aq) + 2e^- \rightleftharpoons H_2(g) \qquad H_2(g) \rightleftharpoons 2H^+(aq) + 2e^-$

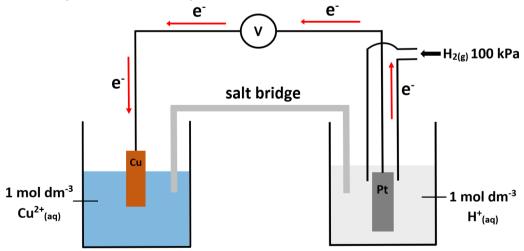
Standard electrode potential (E^{\ominus})


- The standard electrode potential, *E*⊖, is the electrode potential (in V) of a half-cell measured under standard conditions relative to the hydrogen half-cell.
- Standard electrode potential values can be found in section 19 of the data booklet.

Standard conditions used when comparing half-cells:

- Solutions with a concentration of 1.00 mol dm⁻³
- Gases at a pressure of 100 kPa.
- All substances must be pure.
- Temperature of 298 K
- If the half-cell does not include a solid metal, platinum is used as the electrode.

In the diagram shown below, the hydrogen half-cell is connected to a zinc half-cell.


- The voltage produced is 0.76 V.
- The electrons flow from the zinc half-cell to the hydrogen half-cell.
- When a half-cell above hydrogen in section 19 of the data booklet is connected to the hydrogen half-cell, electrons flow to the hydrogen half-cell and the standard electrode potential value is given a negative value.

• The standard electrode potential, E^{\ominus} , of the zinc half-cell is -0.76 V.

In the diagram below, the hydrogen half-cell is connected to a copper half-cell.

- The voltage produced is 0.34 V.
- The electrons flow from the hydrogen half-cell to the copper half-cell.
- When a half-cell below hydrogen in section 19 of the data booklet is connected to the hydrogen half-cell, electrons flow from the hydrogen half-cell and the standard electrode potential value is positive.

• The standard electrode potential, E^{\ominus} , of the copper half-cell is +0.34 V.

REACTIVITY 3.2 HL

WWW.MSJCHEM.COM

Understandings:

• Standard cell potential, *E*⊖, can be calculated from standard potentials. *E*⊖ has a positive value for a spontaneous reaction.

Learning outcomes:

 Predict whether a reaction is spontaneous in the forward or reverse direction from *E*⊖.

Calculating standard cell potential ($E^{\Theta_{cell}}$)

• The following equation is used to calculate the cell potential (E_{Cell}).

 $E^{\ominus}_{\text{cell}} = E^{\ominus}_{\text{red}} - E^{\ominus}_{\text{ox}}$ or $E^{\ominus}_{\text{cell}} = E^{\ominus}_{\text{cathode}} - E^{\ominus}_{\text{anode}}$

- The standard electrode potential values are the reduction potentials and must be used as given in section 19 of the data booklet.
- *E*⊖ values are intensive quantities and are not multiplied according to the stoichiometry of the equation.
- A reaction with a positive *E* \ominus_{cell} value is spontaneous as written and the reverse reaction is non-spontaneous.
- A reaction with a negative $E_{\text{cell}}^{\ominus}$ value is non-spontaneous as written and the reverse reaction is spontaneous.

Example: Calculate the $E^{\ominus_{cell}}$ for the following reaction. Comment on the spontaneity of the reaction.

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
$$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s) \quad E^{\ominus} = -0.76 \text{ V}$$
$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) \quad E^{\ominus} = +0.34 \text{ V}$$

 $E^{\ominus}_{\text{cell}} = 0.34 - (-0.76) = +1.10 \text{ V}$

Exercises:

1) Calculate the E_{Cell} for the following reaction. Comment on the spontaneity of the reaction.

Mg(s) + Fe²⁺(aq) → Mg²⁺(aq) + Fe(s)
Mg²⁺(aq) + 2e⁻
$$\rightleftharpoons$$
 Mg(s) $E^{\ominus} = -2.37$ V
Fe²⁺(aq) + 2e⁻ \rightleftharpoons Fe(s) $E^{\ominus} = -0.45$ V

 $E^{\ominus}_{\text{cell}} = -0.45 - (-2.37) = +1.92 \text{ V}$

The E_{cell} value is positive therefore the reaction is spontaneous as written.

REACTIVITY 3.2 HL

WWW.MSJCHEM.COM

2) Calculate the E_{cell} for the following reaction. Comment on the spontaneity of the reaction.

 $Cr^{2+}(aq) + Cu^{2+}(aq) \rightarrow Cr^{3+}(aq) + Cu^{+}(aq)$ $Cr^{3+}(aq) + e^{-} \rightleftharpoons Cr^{2+}(aq) \quad E^{\ominus} = -0.41 \text{ V}$ $Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq) \quad E^{\ominus} = +0.15 \text{ V}$

 $E_{\text{cell}} = E_{\text{red}} - E_{\text{ox}}$ $E_{\text{cell}} = +0.15 - (-0.41) = +0.56 \text{ V}$ The E_{cell} value is positive therefore the reaction is spontaneous as written.

3) Calculate the standard cell potential, E_{cell} , of a voltaic cell consisting of a nickel half-cell and a silver half-cell.

 $\begin{array}{ll} \mathsf{Ni}^{2+}(\mathsf{aq}) + 2\mathrm{e}^{-} \rightleftharpoons \mathsf{Ni}(\mathsf{s}) & E^{\ominus} = -0.26 \ \mathsf{V} \\ \mathsf{Ag}^{+}(\mathsf{aq}) + \mathrm{e}^{-} \rightleftharpoons \mathsf{Ag}(\mathsf{s}) & E^{\ominus} = +0.80 \ \mathsf{V} \end{array}$

 $E^{\ominus}_{\text{cell}} = +0.80 - (-0.26) = +1.06 \text{ V}$

4) Calculate the standard cell potential, $E^{\ominus_{cell}}$, of a voltaic cell consisting of an aluminum half-cell and an iron half-cell.

 $AI^{3+}(aq) + 3e^{-} \rightleftharpoons AI(s)$ $E^{\ominus} = -1.66 V$ $Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$ $E^{\ominus} = -0.44 V$

 $E^{\ominus}_{\text{cell}} = -0.44 - (-1.66) = +1.22 \text{ V}$

Understandings:

• The equation $\Delta G^{\ominus} = -nFE^{\ominus}$ shows the relationship between standard cell change in Gibbs energy and standard electrode potential for a reaction.

Learning outcomes:

• Determine the value for ΔG^{\ominus} from E^{\ominus} data.

Additional notes:

• The equation and the value of F in C mol⁻¹ are given in the data booklet.

Linking questions:

• Reactivity 1.4 How can thermodynamic data also be used to predict the spontaneity of a reaction?

Relationship between E_{cell} and ΔG_{cell}

• The following equation can be found in section 1 of the data booklet:

$$\Delta G^{\ominus} = -nFE^{\ominus}_{cell}$$

- *n* is the amount (in mol) of electrons transferred in the reaction
- *F* is the Faraday constant (96500 C mol⁻¹).
- For a spontaneous reaction, the ΔG^{\ominus} is negative and the E^{\ominus}_{cell} is positive.
- For a non-spontaneous reaction, the ΔG^{\ominus} is positive and the E^{\ominus}_{cell} is negative.
- The relationship between the $E^{\ominus_{cell}}$ and ΔG^{\ominus} is summarised in the table below.

∆G⊖	E ⊖ _{cell}	Spontaneity
Negative	Positive	Spontaneous
Positive	Negative	Non-spontaneous
Zero	Zero	Reaction is at equilibrium

Exercises: Calculate the ΔG^{\ominus} for the following reactions. Comment on the spontaneity of the reaction in each case.

1) Zn(s) + Cu²⁺(aq) → Zn²⁺(aq) + Cu(s) $E_{\text{Cell}} = +1.10 \text{ V}$ ΔG $\ominus = -2 \times 96500 \times 1.10$ ΔG $\ominus = -212 \text{ kJ mol}^{-1}$

 ΔG^{\ominus} is negative therefore reaction is spontaneous as written.

2) $Ni^{2+}(aq) + Mn(s) \rightarrow Ni(s) + Mn^{2+}(aq)$ $E^{\ominus}_{cell} = -0.93 V$

 $\Delta G^{\ominus} = -2 \times 96500 \times -0.93$ $\Delta G^{\ominus} = +179 \text{ kJ mol}^{-1}$

 ΔG^{\ominus} is positive therefore reaction is non-spontaneous as written.

Understandings:

• During electrolysis of aqueous solutions, competing reactions can occur at the anode and cathode, including the oxidation and reduction of water.

Learning outcomes:

• Deduce from standard electrode potentials the products of the electrolysis of aqueous solutions.

Additional notes:

• Electrolytic processes should include the electrolysis of water and of aqueous solutions.

Electrolysis of aqueous solutions

• When aqueous solutions are electrolysed, water can be oxidised at the anode or reduced at the cathode.

At the cathode (reduction): $2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$

At the anode (oxidation): $2H_2O(I) \rightarrow 4H^+(aq) + O_2(g) + 4e^-$

Electrolysis of water (H₂O)

• Pure water is a poor conductor of electricity, therefore NaOH or H₂SO₄ is added to increase its conductivity.

At the cathode:

Na⁺(aq) + e⁻ → Na(s)
$$E^{\ominus} = -2.71 \text{ V}$$

2H₂O(l) + 2e⁻ → H₂(g) + 2OH⁻(aq) $E^{\ominus} = -0.83 \text{ V}$

 H₂O is reduced instead of Na⁺ ions because H₂O is a stronger oxidising agent / Na⁺ is a weaker oxidising agent.

At the anode:

$$4OH^{-}(aq) \rightarrow 2H_2O(I) + O_2(g) + 4e^{-} \qquad E^{\ominus} = -0.40 V$$

2H₂O(I) → 4H⁺(aq) + O₂(g) + 4e⁻
$$E^{\ominus} = -1.23 V$$

• Both reactions result in the formation of O₂ at the anode.

Overall equation:

$$2H_2O(I) \rightarrow 2H_2(g) + O_2(g)$$

Observed changes at the electrodes:

- A colorless gas is evolved at the anode and cathode.
- The ratio of H₂ to O₂ is 2:1
- The pH at the anode decreases (increase in [H⁺]) and the pH at the cathode increases (increase in [OH⁻]).

Electrolysis of aqueous sodium chloride, NaCl(aq)

• The products of the electrolysis of aqueous solution that contain chloride ions depend on the concentration of the solution.

At the cathode:

Na⁺(aq) + e⁻ → Na(s)
$$E^{\ominus} = -2.71$$
 V2H2O(I) + 2e⁻ → H2(g) + 2OH⁻(aq) $E^{\ominus} = -0.83$ V

 H₂O is reduced instead of Na⁺ ions because H₂O is a stronger oxidising agent / Na⁺ is a weaker oxidising agent.

At the anode:

$$2H_2O(I) \rightarrow 4H^+(aq) + O_2(g) + 4e^ E^{\ominus} = -1.23 V$$

 $2CI^-(aq) \rightarrow CI_2(g) + 2e^ E^{\ominus} = -1.36 V$

- At low concentrations dilute NaCl(aq) O₂(g) is produced.
- At high concentrations concentrated NaCl(aq) Cl₂(g) is produced.

Electrolysis of aqueous copper(II) sulfate, CuSO₄(aq)

Inert (graphite electrodes)

At the cathode:

$$2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq) \qquad E^{\ominus} = -0.83 \text{ V}$$

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 $E^{\ominus} = +0.34$ V

At the anode:

$$2H_2O(I) \rightarrow 4H^+(aq) + O_2(g) + 4e^ E^{\ominus} = -1.23 \text{ V}$$

Copper electrodes

At the cathode:

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) \quad E^{\ominus} = +0.34 \text{ V}$

At the anode:

$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-} E^{\ominus} = -0.34 V$$

Observed changes at electrodes with graphite electrodes:

- Pinky-brown colour as copper is deposited on the cathode.
- The blue color is lost because of discharge of Cu²⁺ ions.

Observed changes at electrodes with copper electrodes:

- Pinky-brown color develops as copper is deposited on the cathode.
- Copper anode loses mass.
- No change in pH.
- No change in blue color because Cu²⁺ ions are formed and removed from the solution so the concentration remains constant.

Exercises:

- 1) Predict the products at the anode and cathode when the following aqueous solutions are electrolysed using platinum electrodes.
- (a) Dilute sodium iodide solution

anode: O₂(g) cathode: H₂(g)

- (b) Copper(II) nitrate solution anode: O₂(g) cathode: Cu(s)
- (c) Concentrated magnesium chloride solution

anode: Cl₂(g) cathode: H₂(g)

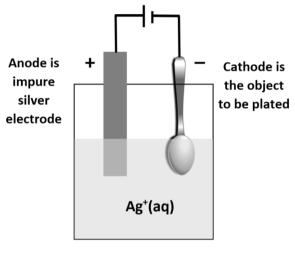
- (d) Sodium hydroxide solution anode: O₂(g) cathode: H₂(g)
- 2) Write half equations for the reactions that occur at the electrodes when copper(II) sulfate solution is electrolysed:
- (a) Using copper electrodes.

anode: $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$ cathode: $Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$

(b) Using platinum electrodes.

anode: $2H_2O(I) \rightarrow O_2(g) + 4H^+(aq) + 4e^$ cathode: $Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$

Understandings:


• Electroplating involves the electrolytic coating of an object with a metallic thin layer.

Learning outcomes:

• Deduce equations for the electrode reactions during electroplating.

Electroplating

- Electroplating involves the electrolytic coating of an object with a thin layer of metal.
- The object to be coated is the cathode, the metal coated is the anode in a solution of aqueous metal ions.
- The electrolyte is an aqueous solution of the same ions as the anode material.

Anode: $Ag(s) \rightarrow Ag^{+}(aq) + e^{-}$ Cathode: $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$

Factors that affect the amount of product in an electrolysis reaction

The factors that affect the amount of product formed in an electrolysis reaction are:

- duration of the electrolysis
- current supplied
- charge on the ion