Structure 1.2 HL

IB CHEMISTRY HL

Structure 1.2.3

Understandings:

• Mass spectra are used to determine the relative atomic masses of elements from their isotopic composition.

Learning outcomes:

• Interpret mass spectra in terms of identity and relative abundance of isotopes.

Additional notes:

• Relative masses and charges of the subatomic particles should be known; actual values are given in the data booklet. The mass of the electron can be considered negligible.

Linking questions:

• Structure 3.2—How does the fragmentation pattern of a compound in the mass spectrometer help in the determination of its structure?

Mass spectra of elements

- A mass spectrum shows relative abundance (or relative intensity) on the *y*-axis and mass to charge ratio (m/z) on the *x*-axis.
- Relative abundance is the percentage of an isotope in a naturally occurring sample of the element.
- Mass to charge ratio (m/z) is the relative mass of an ion divided by its charge it tells us the mass of the ion and therefore the mass of the isotope.

Mass spectrum of boron showing relative abundance (%)

- The mass spectrum shows two peaks at *m*/*z* 10 and *m*/*z* 11 with abundances of 80.10 % and 19.90 % respectively.
- These correspond to the two isotopes of boron, ¹⁰B and ¹¹B.

Isotope	m/z	Relative abundance (%)	
¹⁰ B	10	19.90	
¹¹ B	11	80.10	

• The relative atomic mass, *A*_r, can be calculated as follows:

$$A_{\rm r} = \frac{(10 \times 19.90) + (11 \times 80.10)}{100} = 10.80$$

Mass spectrum of boron showing relative intensities

• Relative intensity is the amount of an ion produced in relation to the most abundant ion (the base peak) which is assigned a relative intensity of 100.

- The base peak is for the ion ¹¹B⁺ as it has the highest abundance and the highest intensity.
- To calculate the intensity of the ¹⁰B⁺ ion, divide 100 by 80.10 and multiply by the % abundance (100 / 80.10 × 19.90 = 24.84).

Isotope	m/z	Relative intensity	
¹⁰ B	10	24.84	
¹¹ B	11	100	

• The relative atomic mass, *A*_r, can be calculated as follows:

$$A_r = \frac{(10 \times 24.84) + (11 \times 100)}{(24.84 + 100)} = 10.80$$

Exercise: The mass spectrum for iron, Fe, is shown. Complete the table below and calculate the relative atomic mass, A_r , of iron.

$$A_r = \frac{(54 \times 5.95) + (56 \times 91.88) + (57 \times 2.17)}{100} = 55.90$$

STRUCTURE 1.2 HL

Mass spectra of diatomic elements

Mass spectrum of chlorine, Cl₂

- Chlorine has two isotopes, ³⁵Cl and ³⁷Cl, with abundances of 75 % and 25 % respectively (3:1 ratio).
- The ³⁵Cl⁺ and ³⁷Cl⁺ ions occur in a 3:1 ratio.
- The molecular ions are shown in the table together with their relative intensities and ratios.

Molecular ions	m/z	Relative intensities (%)	Ratio
[³⁵ Cl ³⁵ Cl] ⁺ or [³⁵ Cl ₂] ⁺	70	100	9
[³⁷ Cl ³⁵ Cl] ⁺	72	66.67	6
[³⁷ Cl ³⁷ Cl] ⁺ or [³⁷ Cl ₂] ⁺	74	11.11	1

• Using the relative intensities, the relative formula mass of chlorine, Cl₂, can be calculated.

$$M_{\rm r} = \frac{(70 \times 100) + (72 \times 66.67) + (74 \times 11.11)}{(100 + 66.67 + 11.11)} = 71.00$$

Exercise: Using the mass spectrum shown, calculate the relative formula mass of bromine, Br₂.

