Structure 1.2

Atomic structure

Protons and neutrons (nucleons) are located in the nucleus of the atom. Electrons are located in energy levels surrounding the nucleus.

Sub-atomic	Relative	Relative
particle	charge	mass
proton	+1	1
neutron	no charge	1
electron	-1	1/2000

Principal energy levels

Principal energy levels (*n*) in an atom

Electrons are located in principal energy levels (main energy levels). The first main energy level (*n*=1) has the lowest energy and energy increases as the value of *n* increases. Each main energy level can hold a maximum of 2n² electrons. $n=2(2 \times 2^2) = 8$ electrons n=3 (2 × 3²) = 18 electrons

Sub-levels in the atom Each main energy level is split into sub-levels. n=1 has 1 sub-level (1s) 4p 3d n=2 has 2 sub-levels (2s, 2p) 4s energy 3s n=3 has 3 sub-levels (3s, 3p, 3d) **2s** n=4 has 4 sub-levels (4s, 4p, 4d, 4f) **1**s Within a main energy level, the order of energy is: s

Sub-levels in the atom

Principal	Sub-levels	Number of electrons	Number of electrons
energy level (n)		in sub-level	in main energy level
1	1 s	2	2
2	2 s	2	8
	2р	6	
	3 s	2	
3	3р	6	18
	3 d	10	
	4 s	2	
4	4p	6	32
	4d	10	
	4f	14	

Sub-levels in the atom

Main energy	Cub lovala	Number of	Number of
level, n	Sub-levels	orbitals	electrons
1	1 s	1	2
2	2s, 2p	4	8
3	3s, 3p, 3d	9	18
4	4s, 4p, 4d, 4f	16	32

Atomic number and mass number

The atomic number (*Z*) is the number of protons in the nucleus of an atom. The mass number (*A*) is the total number of protons and neutrons (nucleons) in the nucleus of an atom.

AX Z

X is the symbol of the element A is the mass number Z is the atomic number

${}^{12}_{6}C \;\; {}^{35}_{17}Cl \;\; {}^{54}_{26}Fe \\ {}^{16}_{17}Cl \;\; {}^{54}_{26}Fe$

MSJChem Tutorials for IB Chemistry Atomic number and mass number

${}^{12}_{6}C \;\; {}^{35}_{17}Cl \;\; {}^{54}_{26}Fe \\ {}^{26}$

6 protons6 neutrons6 electrons

17 protons18 neutrons17 electrons

26 protons28 neutrons26 electrons

${}^{40}_{20}Ca^{2+}$ ${}^{81}_{35}Br^{-}_{35}$

20 protons20 neutrons18 electrons

35 protons46 neutrons36 electrons

MSJChem Tutorials for IB Chemistry Atomic number and mass number Which is correct for $\frac{31}{15}P^{3-}$? **Neutrons Electrons** Protons 16 15 15 Α

В	16	15	18
С	15	16	18
D	15	16	12

Isotopes

topes SO

Isotopes are atoms that have the same atomic number but a different mass number (they have the same number of protons but a different number of neutrons).

$\begin{array}{cccc} 12 & 13 & 14 \\ 6 & 6 & 6 \end{array}$

6 protons6 neutrons6 electrons

6 protons7 neutrons6 electrons

6 protons8 neutrons6 electrons

$\begin{array}{ccc} 1 H & 2 H & 3 H \\ 1 & 1 & 1 \end{array}$

1 proton 0 neutrons 1 electron proton
neutron
electron

proton
neutrons
electron

The relative abundance of an isotope is the percentage of atoms with a specific mass number in a naturally occurring sample of the element.

lsotope	Relative abundance (%)
²⁴ ₁₂ Mg	78.99
${}^{25}_{12}Mg$	10.00
²⁶ ₁₂ Mg	11.01

Isotopes

Isotope	Boiling point (K)	Melting point (K)	Density (g cm ⁻³)
$^{1}_{1}H$	20.4	14.0	0.09
$^{2}_{1}H$	23.7	18.7	0.18
³ ₁ H	25.0	20.6	0.27

Chemical properties are related to the number of electrons in an atom - isotopes have the same number of electrons, therefore they have identical chemical properties. Isotopes have different numbers of neutrons, therefore their masses are different. **Isotopes have different physical properties such as density** and boiling point. To summarise, isotopes have identical chemical properties but different physical properties.

Calculating relative atomic mass (A_r)

$\begin{array}{c} \text{MSJChem} \\ \hline \text{Tutorials for IB Chemistry} \end{array} Relative atomic mass <math>(A_r)$ Mass spectrum of lead (Pb)

lsotope	Relative abundance (%)
²⁰⁴ Pb	2.00
²⁰⁶ Pb	24.00
²⁰⁷ Pb	22.00
²⁰⁸ Pb	52.00

lsotope	Relative abundance (%)
²⁰⁴ Pb	2.00
²⁰⁶ Pb	24.00
²⁰⁷ Pb	22.00
²⁰⁸ Pb	52.00

$$A_{\rm r} = \frac{(204 \times 2.00) + (206 \times 24.00) + (207 \times 22.00) + (208 \times 52.00)}{100} = 207.20$$

Relative atomic mass (A_r)

lsotope	Relative abundance (%)
⁵⁴ Fe	5.95
⁵⁶ Fe	91.88
⁵⁷ Fe	2.17

 $\frac{(54 \times 5.95) + (56 \times 91.88) + (57 \times 2.17)}{= 55.90}$ 100

EXAMPLES for IB Chemistry Relative atomic mass (A_r) Bromine ($A_r = 79.90$) has two isotopes, ⁷⁹Br and ⁸¹Br. Calculate the relative abundance of each isotope.

$79.90 = \frac{81(x) + 79(100 - x)}{100}$

7990 = 81x + 7900 - 79x $x = 45^{81}Br = 45\%^{79}Br = 55\%$

EVALUATE: Chemistry Relative atomic mass (A_r) Europium (A_r = 151.96) has two isotopes, ¹⁵¹Eu and ¹⁵³Eu. Calculate the percentage abundance of each isotope. 153(x) + 151(100 - x)

 $151.96 = \frac{153(x) + 151(100 - x)}{100}$

15196 = 153x + 15100 - 151xx = 48 ¹⁵³Eu = 48% ¹⁵¹Eu = 52%