Whs Jehnelu Tritortals tor aB ehemiscy

Structure 1.2

HJSJ Oheria Tritortals tor aB ehemiscy

Atomic structure

$\left.\begin{array}{l}\odot \\ \text { electron } \\ \oplus \\ \hline\end{array}\right)$ neuton

Protons and neutrons (nucleons) are located in the nucleus of the atom.

Electrons are located in energy

 levels surrounding the nucleus.| Sub-atomic
 particle | Relative
 charge | Relative
 mass |
| :---: | :---: | :---: |
| proton | +1 | 1 |
| neutron | no charge | 1 |
| electron | -1 | $1 / 2000$ |

Principal energy levels (n) in an atom

Electrons are located in principal energy levels (main energy levels). The first main energy level ($n=1$) has the lowest energy and energy increases as the value of n increases. Each main energy level can hold a maximum of $2 \mathrm{n}^{2}$ electrons.
$n=2\left(2 \times 2^{2}\right)=8$ electrons
$n=3\left(2 \times 3^{2}\right)=18$ electrons

Each main energy level is split into sub-levels. $n=1$ has 1 sub-level (1s)
$n=2$ has 2 sub-levels ($2 \mathrm{~s}, 2 \mathrm{p}$)
$n=3$ has 3 sub-levels ($3 \mathrm{~s}, 3 \mathrm{p}, 3 \mathrm{~d}$)
$n=4$ has 4 sub-levels ($4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}$)

Within a main energy level, the order of energy is:

$$
s<p<d<f
$$

Sub-levels th the ation

Principal energy level (n)	Sub-levels	Number of electrons in sub-level	Number of electrons in main energy level
1	1 s	2	2
2	2 s	2	8
	2 p	6	
	3 s	2	18
3	3 p	6	
	3 d	10	
	4 s	2	32
	4 p	6	
	4 d	10	
	4 f	14	

Main energy level, \boldsymbol{n}	Sub-levels	Number of orbitals	Number of electrons
1	1s	1	2
2	$2 s, 2 p$	4	8
3	$3 s, 3 p, 3 d$	9	18
4	$4 s, 4 p, 4 d, 4 f$	16	32

MJSJ Ohelu Tritortals tor aB ehemiscy

$$
\begin{gathered}
\text { Atomujg numuber anud } \\
\text { mase number }
\end{gathered}
$$ The atomic number (Z) is the number of protons in the nucleus of an atom.

The mass number (A) is the total number of protons and neutrons (nucleons) in the nucleus of an atom.

Atomic number
Element
Relative atomic
mass

X is the symbol of the element A is the mass number Z is the atomic number

12

${ }_{20}^{40} \mathrm{Ca}^{2+}$

20 protons
20 neutrons
18 electrons
35 protons
46 neutrons
36 electrons

Which is correct for ${ }_{15}^{31} \mathrm{P}^{3-}$?

	Protons	Neutrons	Electrons
A	15	16	15
B	16	15	18
C	15	16	18
D	15	16	12

HJSJ Oheria Tritortals tor aB ehemiscy

Isotopes

Isotopes are atoms that have the same atomic number but a different mass number (they have the same number of protons but a different number of neutrons).

12 1 3 C ${ }_{6}^{14} \mathrm{C}$

6 protons
6 neutrons
6 electrons

6 protons
7 neutrons
6 electrons

6 protons
8 neutrons
6 electrons

${ }_{1}^{1} \mathrm{H}$

1 proton

1 neutron
1 electron

1 proton
2 neutrons
1 electron

The relative abundance of an isotope is the percentage of atoms with a specific mass number in a naturally occurring sample of the element.

Isotope	Relative abundance (\%)
${ }_{12}^{24} \mathbf{M g}$	78.99
${ }^{25} \mathbf{M g}$	10.00
${ }_{12}^{26} \mathbf{M g}$	11.01

Isotope	Boiling point (K)	Melting point (K)	Density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
${ }_{1}^{1} \mathrm{H}$	20.4	14.0	0.09
${ }_{1}^{2} \mathrm{H}$	23.7	18.7	0.18
${ }_{1}^{3} \mathrm{H}$	25.0	20.6	0.27
${ }_{1}^{3} \mathrm{H}$			

Chemical properties are related to the number of electrons in an atom - isotopes have the same number of electrons, therefore they have identical chemical properties. Isotopes have different numbers of neutrons, therefore their masses are different.
Isotopes have different physical properties such as density and boiling point.
To summarise, isotopes have identical chemical properties but different physical properties.

HJSJ Oheria Triontals tor aB ehemiscy

$$
\begin{aligned}
& \text { Callgulajive relajive } \\
& \text { atronjc mase }\left(A^{1}\right)
\end{aligned}
$$

Mass spectrum of lead (Pb)

Isotope	Relative abundance (\%)
${ }^{204} \mathrm{~Pb}$	2.00
${ }^{206} \mathrm{~Pb}$	24.00
${ }^{207} \mathrm{~Pb}$	22.00
${ }^{208} \mathrm{~Pb}$	52.00

Isotope	Relative abundance (\%)
${ }^{204} \mathrm{~Pb}$	2.00
${ }^{206} \mathrm{~Pb}$	24.00
${ }^{207} \mathrm{~Pb}$	22.00
${ }^{208} \mathrm{~Pb}$	52.00

$$
A_{\mathrm{r}}=\frac{(204 \times 2.00)+(206 \times 24.00)+(207 \times 22.00)+(208 \times 52.00)}{100}=207.20
$$

Isotope \quad Relative abundance (\%)

$$
\begin{array}{|c|c|}
\hline{ }^{54} \mathrm{Fe} & 5.95 \\
\hline{ }^{56} \mathrm{Fe} & 91.88 \\
\hline{ }^{57} \mathrm{Fe} & 2.17 \\
\hline
\end{array}
$$

$$
A_{\mathrm{r}}=\frac{(54 \times 5.95)+(56 \times 91.88)+(57 \times 2.17)}{100}=55.90
$$

Bromine ($A_{r}=79.90$) has two isotopes, ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$. Calculate the relative abundance of each isotope.

$$
\begin{gathered}
79.90=\frac{81(x)+79(100-x)}{100} \\
7990=81 x+7900-79 x \\
x=45{ }^{81} \mathrm{Br}=45 \%{ }^{79} \mathrm{Br}=55 \%
\end{gathered}
$$

Europium ($A_{r}=151.96$) has two isotopes, ${ }^{151} \mathrm{Eu}$ and ${ }^{153} \mathrm{Eu}$.
Calculate the percentage abundance of each isotope.

$$
\begin{gathered}
151.96=\frac{153(x)+151(100-x)}{100} \\
15196=153 x+15100-151 x \\
x=48{ }^{153} \mathrm{Eu}=48 \%{ }^{151} \mathrm{Eu}=52 \%
\end{gathered}
$$

