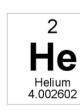
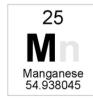
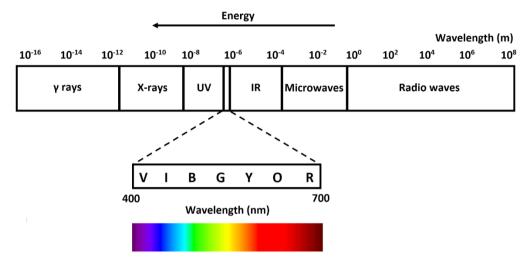

Structure 1.3


IB CHEMISTRY SL



Structure 1.3.1

Understandings:


• Emission spectra are produced by atoms emitting photons when electrons in excited states return to lower energy levels.

Learning outcome(s):

- Qualitatively describe the relationship between colour, wavelength, frequency and energy across the electromagnetic spectrum.
- Distinguish between a continuous and a line spectrum.

The electromagnetic spectrum

- The electromagnetic spectrum is the range of wavelengths, or frequencies, of electromagnetic radiation.
- It extends from radio rays (low energy, long wavelength, low frequency) to gamma rays (high energy, short wavelength, high frequency).

- Higher energy corresponds to higher frequency and shorter wavelength.
- Lower energy corresponds to lower frequency and longer wavelength.

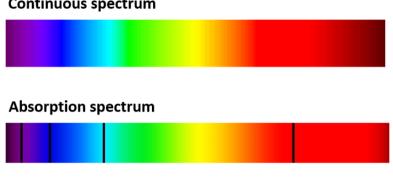
Exercises:

1. Write the following in order of increasing energy.

UV, visible light, gamma rays, X-rays, microwaves, radio waves, infrared

2. Write the following in order of increasing wavelength.

UV, visible light, gamma rays, X-rays, microwaves, radio waves, infrared

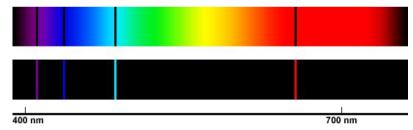

3. Write the following in order of increasing frequency.

UV, visible light, gamma rays, X-rays, microwaves, radio waves, infrared

- Write the following in order of increasing energy.
 Orange, yellow, red, violet, green, indigo, blue
- 5. State the relationship between energy, frequency and wavelength.

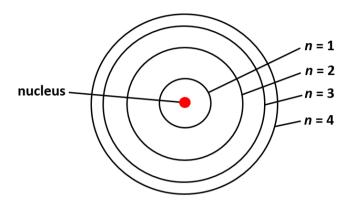
Line spectra

The three types of line spectra are continuous, absorption, and emission spectra. •


Continuous spectrum

Emission spectrum

- A continuous spectrum shows all the wavelengths, or frequencies, of visible light. ٠
- An absorption spectrum shows black lines on a coloured background. •
- An emission spectrum shows coloured lines on a black background. •
- Each element has unique absorption and emission spectra and they can be used • to identify unknown elements.


Exercises

- 1. Classify the spectra above as absorption or emission spectra.
- 2. Describe the difference between the two spectra.

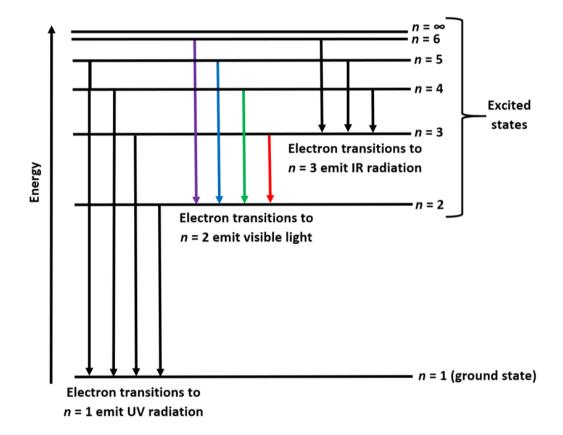
How are line spectra produced?

• The Bohr model of the atom has the protons and neutrons located in the nucleus and the electrons located in energy levels around the nucleus.

- Electrons can only exist within the energy levels and electrons in the same energy level have the same amount of energy.
- Electrons can transition between energy levels by either absorbing or emitting specific amounts of energy.
- The energy is in the form of small packets of energy called photons.
- If an electron absorbs an exact amount of energy, it will transition to a higher energy level (for example from n = 1 to n = 2).
- If an electron emits an exact amount of energy, it will transition to a lower energy level (for example n = 4 to n = 2).

Structure 1.3.2

Understandings:


• The line emission spectrum of hydrogen provides evidence for the existence of electrons in discrete energy levels, which converge at higher energies.

Learning outcome(s):

• Describe the emission spectrum of the hydrogen atom, including the relationships between the lines and energy transitions to the first, second and third energy levels.

The hydrogen emission spectrum

• The hydrogen emission spectrum is shown below.

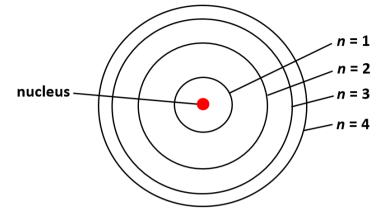
- Electron transitions to the first energy level (*n*=1) release the highest amount of energy and are in the UV region of the electromagnetic spectrum.
- Electron transitions to the *n*=2 energy level emit energy that corresponds to the frequency, or wavelength of visible light.
- Electron transitions to the *n*=3 energy level emit energy in the infrared region of the electromagnetic spectrum.
- The longer the arrow, the greater the amount of energy emitted (or absorbed).
- Higher energy corresponds to higher frequency and shorter wavelength.
- Lower energy corresponds to lower frequency and longer wavelength.

Exercises:

- 1. What is absorbed when an electron transitions from a lower energy level to a higher energy level?
- 2. What is emitted when an electron transitions from a higher energy level to a lower energy level?
- 3. Do spectral lines converge at high energy or low energy?
- 4. Electron transitions to *n*=1 emit which type of electromagnetic radiation?
- 5. Electron transitions to *n*=2 emit which type of electromagnetic radiation?
- 6. Electron transitions to n=3 emit which type of electromagnetic radiation?

Structure 1.3.3 and 1.3.4

Understandings:


- The main energy level is given an integer number, n, and can hold a maximum of $2n^2$ electrons (1.3.3).
- A more detailed model of the atom describes the division of the main energy level into s, p, d and f sublevels of successively higher energies (1.3.4).

Learning outcome(s):

- Deduce the maximum number of electrons that can occupy each energy level (1.3.3).
- Recognize the shape and orientation of an s atomic orbital and the three p atomic orbitals (1.3.4).

Electron configurations

• The Bohr model of the atom has the electrons located in energy levels (principal energy levels) which are assigned the letter *n*.

- *n*=1 is closest to the nucleus and has the lowest energy. As the value of *n* increases, the energy also increases.
- Each main energy level can hold $2n^2$ electrons.
- The main energy levels are divided into sub-levels: s, p, d and f.
- The order in terms of energy of the sub-levels is: s

Energy level	sub-level	maximum number of electrons in sub- level	maximum number of electrons in level
<i>n</i> = 1	1s	2	2
<i>n</i> = 2	2s	2	
	2р	6	8
	3s	2	
<i>n</i> = 3	3р	6	18
	3d	10	
	4s	2	
<i>n</i> = 4	4p	6	
	4d	10	32
	4f	14	

Exercise:

- The *n*=1 energy level can hold a maximum of _____ electrons.
- The *n*=2 energy level can hold a maximum of _____ electrons.
- The *n*=3 energy level can hold a maximum of _____ electrons.
- The *n*=4 energy level can hold a maximum of _____ electrons.

Structure 1.3.5

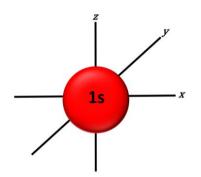
Understandings:

- Each orbital has a defined energy state for a given electron configuration and chemical environment, and can hold two electrons of opposite spin.
- Sublevels contain a fixed number of orbitals, regions of space where there is a high probability of finding an electron.

Learning outcome(s):

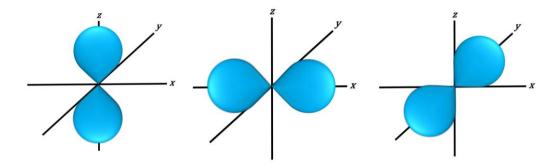
• Apply the Aufbau principle, Hund's rule and the Pauli exclusion principle to deduce electron configurations for atoms and ions up to Z = 36.

Additional notes:


- Full electron configurations and condensed electron configurations using the noble gas core should be covered.
- Orbital diagrams, i.e. arrow-in-box diagrams, should be used to represent the filling and relative energy of orbitals.
- The electron configurations of Cr and Cu as exceptions should be covered.

Atomic orbitals

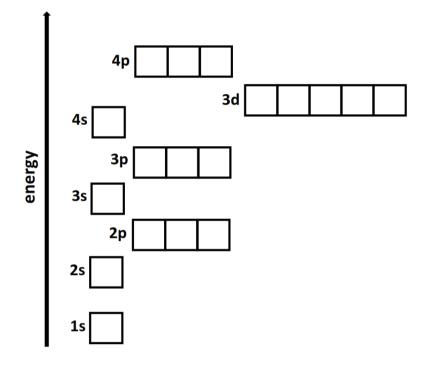
- Atomic orbitals describe the probability of finding an electron in an area of space.
- They represent the region around the nucleus where there is a 95% chance of finding an electron.


s atomic orbitals

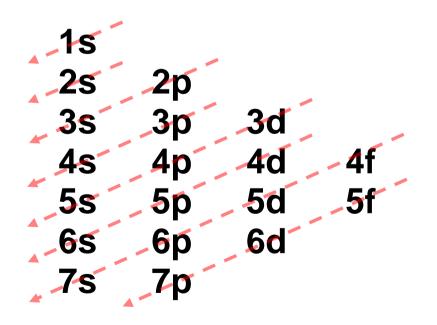
• s orbitals are spherical in shape and can hold a maximum of two electrons.

p atomic orbitals

- A p orbital is like two identical balloons tied together at the centre (dumbbell shaped).
- The p sub-level contains three p orbitals of equal energy (degenerate orbitals) and can hold a maximum of six electrons.



d and f atomic orbitals

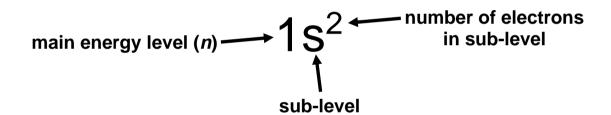

- The d sub-level contains five degenerate d orbitals and can hold a maximum of 10 electrons.
- The f sub-level contains seven degenerate f orbitals and can hold a maximum of 14 electrons.
- Students are not required to know the shapes of d and f atomic orbitals.

The Aufbau Principle

- The Aufbau Principle states that electrons are placed into orbitals of lowest energy first.
- The following diagram shows the sub-levels in order of increasing energy.
- Note the overlap between the 4s and 3d sub-levels.

• The filling of the sub-levels follows the pattern below.

Electron spin and the Pauli Exclusion Principle


- The Pauli Exclusion Principle states that no two electrons in the same orbital can have the same quantum number.
- This means that no more than two electrons can occupy an orbital and they must spin in opposite directions.
- Electrons and their spins are represented by single-headed arrows (1 or l).

Hund's rule

- Hund's rule states that if more than one degenerate orbital in a sub-level is available, electrons occupy separate orbitals with parallel spins.
- Always fill orbitals of equal energy with one electron first and then add the second electron once each orbital has one electron in it.

Writing electron configurations

- Electron configurations show how electrons are arranged in sub-levels.
- The first number shows the main energy level (or principal quantum number).
- The letter shows the sub-level (s, p, d or f).
- The number in superscript shows the number of electrons in the sub-level.

Condensed electron configurations

Notation	Electron configuration (core electrons)		
[He]	1s ²		
[Ne]	1s² 2s² 2p ⁶		
[Ar]	1s² 2s² 2p ⁶ 3s² 3p ⁶		
[Kr]	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶		

Example: the full and condensed electron configurations of rubidium (Rb) are shown below.

- Rb 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹
- Rb [Kr] 5s¹

Exercises:

1. Write full electron configurations for the following atoms:

1) He	11) Ar
2) Li	12) Ca
3) B	13) Ti
4) C	14) Mn
5) O	15) Ni
6) Ne	16) Zn
7) Na	17) Ge
8) AI	18) Se
9) P	19) Br
10) CI	20) Kr

2. Write condensed electron configurations for the following atoms.

- 1) Li
- 2) Mg
- 3) S
- 4) Ca
- 5) Ga

Electron configurations of ions

• Note that First row d-block elements (Sc to Zn) lose their 4s electrons first when they form ions.

Write the condensed electron configuration for the Ni²⁺ ion.

Write the condensed electron configuration for the Mn²⁺ion.

Exercise: write condensed electron configurations for the following ions:

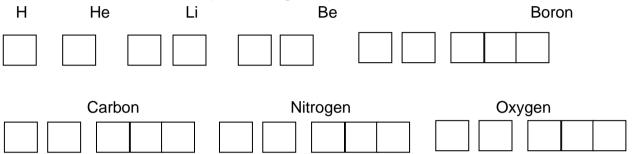
- 1) Na+
- 2) S²⁻
- 3) Ca²⁺
- 4) Cr³⁺
- 5) Cu+

Exceptions to the Aufbau principle: copper (Cu) and chromium (Cr)

Chromium Z=24

• The abbreviated electron configuration for the Cr atom is:

Copper Z=29


• The abbreviated electron configuration for the Cu atom is:

Orbital diagrams – arrows in boxes

- Boxes can be used to represent the atomic orbitals with single headed arrows used to represent the spinning electrons.
- Recall that electrons fill orbitals according to Hund's rule and the Pauli exclusion principle; an orbital can hold a maximum of two electrons which must have opposite spins, 1 or l, and degenerate orbitals are filled singly before being doubly occupied.

Exercises:

1. Draw arrows in boxes (orbital diagrams) for the first 7 elements below:

- 2. Draw orbital diagrams for the following showing only the 4s and 3d sub-levels.
- 1. Ca
- 2. V
- 3. Mn
- 4. Cr³⁺
- 5. Cu²⁺