
Structure 1.3 HL

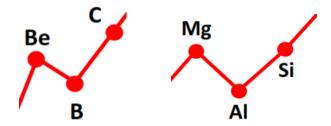
IB CHEMISTRY HL

Structure 1.3.6

Understandings:

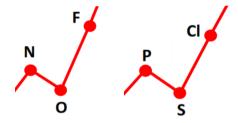
• In an emission spectrum, the limit of convergence at higher frequency corresponds to ionisation.

Learning outcomes:


- Explain the trends and discontinuities in first ionisation energy (IE) across a period and down a group.
- Calculate the value of the first IE from spectral data that gives the wavelength or frequency of the convergence limit.

Additional notes:

• The value of the Planck constant h and the equations E = hf and $c = \lambda f$ are given in the data booklet.


Discontinuities in first ionisation energy across a period

Be to B and Mg to Al

- Be has the electronic configuration 1s²2s²
- B has the electronic configuration 1s²2s²2p¹
- Electrons in p orbitals are of higher energy and further from the nucleus than electrons in s orbitals, therefore they require less energy to remove.
- The same explanation can be applied for the drop in ionisation energy from Mg to Al, except that the electron configurations are 1s² 2s² 2p⁶ 3s² and 1s² 2s² 2p⁶ 3s²
 3p¹

N to O and P to S

- N has the electronic configuration 1s² 2s² 2p³
- O has the electronic configuration 1s² 2s² 2p⁴
- For oxygen, the electron is removed from a doubly occupied p orbital. An electron
 in a doubly occupied orbital is repelled by the other electron and requires less
 energy to remove than an electron in a half-filled orbital.

_			
LVA	ro		^~:
Exe		15	E5.

1. Explain the reason for the decrease in first ionisation energy between Mg and Al.
2. Explain the reason for the decrease in first ionisation energy between P and S.

Calculations involving E = hf

$$E = hf$$
 $c = \lambda f$

E is energy in Joules (J)

h is Planck's constant $(6.63 \times 10^{-34} \, \text{J} \cdot \text{s})$

f is the frequency in s⁻¹ (or Hertz, Hz)

c is the speed of light $(3.00 \times 10^8 \,\mathrm{m s^{-1}})$

 λ is the wavelength in m or nm (1 m = 1 x 10⁹ nm)

Exercises: use the formulas and constants above to answer the following questions.

- 1. What is the frequency, in s⁻¹, of a photon of light with an energy of 2.24×10^{-19} J?
- 2. What is the wavelength, in m, of light with a frequency of $7.11 \times 10^{14} \,\mathrm{s}^{-1}$?
- **3.** A photon of light has a wavelength of 6.98×10^{-7} m. How much energy does it have in J?
- **4.** How much energy, in J, does a photon of light have if it has a wavelength of 5.26×10^{-7} m?
- **5.** What is the wavelength, in m, of a photon of light if it has an energy of 4.01×10^{-19} J?
- **6.** What is the wavelength, in m, of a photon of light with an energy of $1.66 \times 10^{-19} \, \text{J}$?

Ionisation energy and the convergence limit

- In an atom, the highest possible energy level corresponds to the frequency at which the spectral lines converge $(n=\infty)$.
- If enough energy is supplied, the electron in the hydrogen atom can be promoted from n=1 to the infinity energy level, $n=\infty$.
- At this point, the electron has been removed from the attraction of the nucleus and the atom has been ionised.

Calculating ionisation energy

Example 1: In the hydrogen emission spectrum, the transition from $n=\infty$ to n=1 produces a line in the UV spectrum with a wavelength of 9.12×10^{-8} m. Calculate the ionisation energy of a hydrogen atom.

• First, convert from wavelength to frequency:

$$c = \lambda f$$

 $3.00 \times 10^8 = 9.12 \times 10^{-8} f$
 $f = \frac{3.00 \times 10^8}{9.12 \times 10^{-8}} = 3.29 \times 10^{15} \text{ s}^{-1}$

• Next, calculate the energy to remove one electron from one hydrogen atom:

$$E=hf$$

 $E = 6.63 \times 10^{-34} \times 3.29 \times 10^{15}$
 $E = 2.18 \times 10^{-18} \text{ J}$

 Finally, calculate the energy to remove one mole of electrons from one mole of hydrogen atom, in kJ mol⁻¹

$$(6.02 \times 10^{23} \times 2.18 \times 10^{-18}) / 1000 = 1310 \text{ kJ mol}^{-1}$$

Example 2: Determine the wavelength of a photon that will cause the first ionisation of helium. The ionisation energy of helium is 2372 kJ mol⁻¹.

• First, calculate the energy to remove one electron from one helium atom:

$$E = \frac{2372000}{6.02 \times 10^{23}} = 3.94 \times 10^{-18} \,\mathrm{J}$$

• Next, calculate the frequency of the photon:

$$E=hf$$

3.94 × 10⁻¹⁸ = 6.63 × 10⁻³⁴ f
 $f = 5.94 \times 10^{15} \text{ s}^{-1}$

• Finally convert from frequency to wavelength:

$$c = \lambda f$$

 $3.00 \times 10^8 = 5.94 \times 10^{15} \lambda$
 $\lambda = \frac{3.00 \times 10^8}{5.94 \times 10^{15}} = 5.05 \times 10^{-8} \,\text{m}$

Exercises:

- 1. Which transition corresponds to the ionisation of hydrogen in the ground state?
- **2.** What has occurred when the electron is said to be in the $n=\infty$ energy level?
- **3.** The convergence limit for the sodium atom has a wavelength of 2.42×10^{-7} m. Calculate the first ionization energy, in kJ mol⁻¹, of sodium from this data.

The two equations you need are $c = \lambda f$ and E = hfPlanck's constant = $6.63 \times 10^{-34} \,\text{J s}$ $c = 3.00 \times 10^8 \,\text{ms}^{-1}$

4. Calculate the frequency of a photon that will cause the first ionisation of copper.

Structure 1.3.7

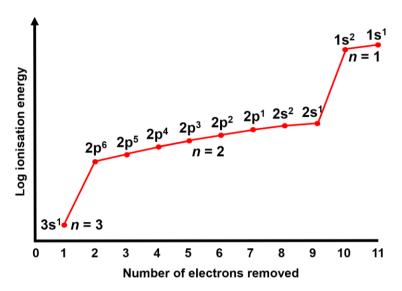
Understandings:

• Successive ionization energy (IE) data for an element give information about its electron configuration.

Learning outcomes:

• Deduce the group of an element from its successive ionization data.

Additional notes:


• Databases are useful for compiling graphs of trends in IEs.

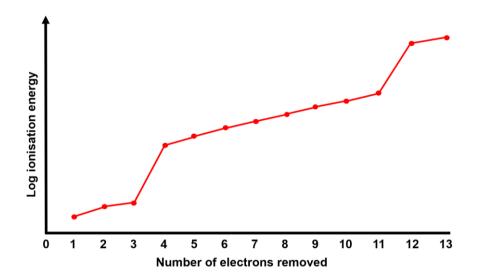
Linking questions:

• AHL Structure 3.1—How do patterns of successive IEs of transition elements help to explain the variable oxidation states of these elements?

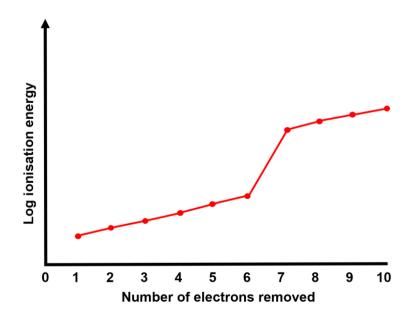
Successive ionisation energies

- We can determine to which group an element belongs by looking at a graph of successive ionisation energies.
- The graph below shows the successive ionisation energies of sodium.

- The large increases in ionisation energy show the existence of main energy levels in the atom.
- Successive ionisation energies show an increase because as more electrons are removed, the nucleus attracts the remaining electrons more strongly.
- There is a large increase in ionisation energy after the first electron is removed. This tells us that the element is located in group one of the periodic table.

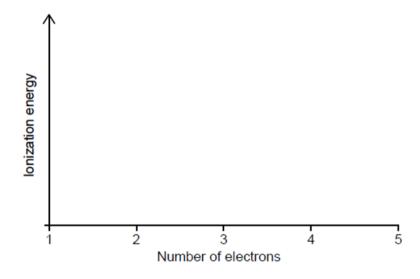

Lable of curres	eiva ianiestian	ANAPAIAS TAP	elements Na to S

Element	Group	IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆	IE ₇
	number	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹¹	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
Na	1	496	4562	6912	9543	13353	16610	20114
Mg	2	738	1451	7733	10540	13630	17995	21703
Al	13	578	1817	2745	11575	14380	18376	23293
Si	14	787	1577	3231	4356	16091	19784	23783
Р	15	1012	1903	2912	4956	6273	22233	25397
S	16	1000	2251	3361	4564	7013	8495	27106


- From the table, we can see that the large increase in ionisation energy corresponds to the group number and the number of valence electrons.
- For group 1 elements with one valence electron, the large increase occurs for the second ionisation.
- For group 2 elements with two valence electrons, the large increase occurs for the third ionisation and so on.

Exercises:

- 1. Explain why the successive ionisation energies of an element show an increase.
- **2.** From the graph of successive ionisation energies below, explain to which group of the periodic table the elements belong.


3. The graph below shows the first ten ionisation energies of an element. To which group does the element belong?

4. From the table of data shown below, explain to which group the element belongs.

	1 st	2 nd	3 rd	4 th	5 th
Ionisation	1087	2353	4621	6223	37831
energy (kJ mol ⁻¹)					

5. Sketch a graph to show the relative values of the successive ionisation energies of boron.

