Structure 1.4

IB CHEMISTRY SL

Structure 1.4.1

Understandings:

- The mole (mol) is the SI unit of amount of substance. One mole contains exactly the number of elementary entities given by the Avogadro constant.

Learning outcomes:

- Convert the amount of substance, n, to the number of specified elementary entities.

Additional notes:

- An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or a specified group of particles.
- The Avogadro constant N_{A} is given in the data booklet. It has the units mol^{-1}.

The mole and amount of substance

- The mole, symbol mol, is the SI unit of amount of substance (n).
- It is a measure of the number of specified elementary entities (an elementary entity can refer to an atom, a molecule, an ion, an electron, or any other particle).
- One mole contains exactly 6.02×10^{23} elementary entities.
- This is numerically equal to the Avogadro constant (L or N_{A}) which is $6.02 \times 10^{23} \mathrm{~mol}^{-1}$.

Elementary entity	Number of elementary entities in one mole
Atoms	6.02×10^{23}
Molecules	6.02×10^{23}
Ions	6.02×10^{23}
Formula units	6.02×10^{23}

Structure 1.4.2

Understandings:

- Masses of atoms are compared on a scale relative to ${ }^{12} \mathrm{C}$ and are expressed as relative atomic mass A_{r} and relative formula mass M_{r}.

Learning outcomes:

- Determine relative formula masses M_{r} from relative atomic masses A_{r}.

Additional notes:

- Relative atomic mass and relative formula mass have no units.
- The values of relative atomic masses given to two decimal places in the data booklet should be used in calculations.

Relative atomic mass and relative formula mass

- Relative atomic mass, A_{r}, is the weighted average mass of the naturally occurring isotopes of an element relative to $1 / 12$ the mass of an atom of carbon-12.
- The relative atomic mass scale is based on the isotope carbon-12 which has a mass of exactly 12 amu .
- Relative formula mass, M_{r}, is the weighted average mass of a substance relative to $1 / 12$ the mass of an atom of ${ }^{12} \mathrm{C}$.
- The M_{r} is the sum of the A_{r} of the atoms in a substance.
- Both relative atomic mass and relative formula mass do not have units.

Exercise: Calculate the relative formula masses of the following.

1. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
2. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
3. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
4. KCl
5. MgBr_{2}

Structure 1.4.3

Understandings:

- Molar mass M has the units $\mathrm{g} \mathrm{mol}^{-1}$

Learning outcomes:

- Solve problems involving the relationships between the number of particles, the amount of substance in moles and the mass in grams.

Additional notes:

- The relationship $n=m / M$ is given in the data booklet.

Molar mass (M)

- The molar mass (M) is the mass of one mole of a substance in grams.
- The unit for molar mass is $\mathrm{g} \mathrm{mol}^{-1}$.
- The molar mass of a substance is numerically equal to its relative atomic mass.
- To convert A_{r} to M, multiply by the molar mass constant, $M u$, which is approximately equal to $1 \mathrm{~g} \mathrm{~mol}^{-1}$.

Example: Determine the molar mass of $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$ is composed of 2 H atoms and 1 O atom. Find the relative atomic mass $\left(A_{r}\right)$ of the elements from the periodic table and add them together. Multiply by the molar mass constant to get the molar mass.
$(2 \times 1.01)+(1 \times 16.00)=18.02$
$18.02 \times 1 \mathrm{~g} \mathrm{~mol}^{-1}=18.02 \mathrm{~g} \mathrm{~mol}^{-1}$
The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $18.02 \mathrm{~g} \mathrm{~mol}^{-1}$

Exercise: determine the molar mass of the following.

Substance	Molar mass $\left(\mathbf{g ~ m o l}^{-1}\right)$	Substance	Molar mass $\left(\mathbf{g ~ m o l}^{-1}\right)$	Substance	Molar mass $\left(\mathbf{g ~ m o l}^{-1}\right)$
H_{2}		CO_{2}		CaCl_{2}	
O_{2}		HCl		$\mathrm{Al}_{2} \mathrm{O}_{3}$	
Cl_{2}		CH_{4}		$\mathrm{NH}_{4} \mathrm{NO}_{3}$	
I_{2}		NH_{3}		$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	

Calculations involving amount (n), mass (m) and molar mass (M)

- To convert from mass (in g) to amount (in mol), divide the mass of the substance by its molar mass.

$$
\begin{gathered}
\operatorname{amount}(\mathrm{mol})=\frac{\operatorname{mass}(\mathrm{g})}{\operatorname{molar} \operatorname{mass}\left(\mathrm{g} \mathrm{~mol}^{-1}\right)} \\
n(\mathrm{~mol})=\frac{m(\mathrm{~g})}{M\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)} \quad n=\frac{m}{M}
\end{gathered}
$$

- This equation can be rearranged to find calculate (m) and molar mass (M) :

$$
m=n \times M \quad M=\frac{m}{n}
$$

Excercises:

1. Calculate the amount in mol of the following.
a. 30.00 g Mg
b. $75.00 \mathrm{~g} \mathrm{O}_{2}$
c. $26.93 \mathrm{~g} \mathrm{CuSO}_{4}$
d. 15.00 g NaOH
e. $1.78 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$
f. $45.82 \mathrm{~g} \mathrm{CaCl}_{2}$
g. $98.36 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$
h. $173.81 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$
i. $118.62 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
j. $261.04 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
2. Calculate the mass in grams of the following.
a. 3.00 mol Mg
b. $0.100 \mathrm{~mol} \mathrm{O}_{2}$
c. $0.400 \mathrm{~mol} \mathrm{CuSO}_{4}$
d. 9.84 mol NaOH
e. $0.270 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
f. 0.600 mol CaCl 2
g. $3.56 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
h. $2.40 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$
i. $0.850 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
j. $0.0593 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$

The relationship between number of particles, amount in $\mathbf{m o l}(n)$ and mass (m)

- One mole of any substance contains 6.02×10^{23} particles (atoms, molecules, formula units).
- The molar mass (M) of a substance is the mass (in g) of one mole of a substance.

Atoms Molecules Formula units	multiply by 6.02×10^{23} divide by 6.02×10^{23}	Amount in mol	divide by molar mass multiply by molar mass

Examples:

1. Calculate the number of $\mathrm{H}_{2} \mathrm{O}$ molecules in 18.02 g of pure water.

First, convert to amount (in mol):

$$
n=\frac{m}{M} \quad n=\frac{18.02}{18.02}=1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Next, convert to number of molecules:
One mole of any substance contains 6.02×10^{23} molecules
1 mol of $\mathrm{H}_{2} \mathrm{O}$ contains $6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
2. Calculate the mass of one molecule of $\mathrm{H}_{2} \mathrm{O}$.

One mole of $\mathrm{H}_{2} \mathrm{O}\left(6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}\right.$ molecules $)$ has a mass of 18.02 g
One molecule of $\mathrm{H}_{2} \mathrm{O}$ has a mass of $\frac{18.02}{6.02 \times 10^{23}}=2.99 \times 10^{-23} \mathrm{~g}$
3. Determine the number of H atoms in one mol of $\mathrm{H}_{2} \mathrm{O}$.

One molecule of $\mathrm{H}_{2} \mathrm{O}$ is composed of 2 H atoms and 1 O atom.
One mole of $\mathrm{H}_{2} \mathrm{O}$ has $6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
$2 \times 6.02 \times 10^{23}=1.20 \times 10^{24} \mathrm{H}$ atoms

Exercises:

1. Calculate the number of molecules in the following:
a. $0.500 \mathrm{~mol} \mathrm{CH}_{4}$
b. $0.750 \mathrm{~mol} \mathrm{SO}_{2}$
c. $1.08 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
d. $2.50 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
e. $1.45 \times 10^{-3} \mathrm{~mol} \mathrm{NH}_{3}$
2. Calculate the total number of atoms in the following:
a. $0.500 \mathrm{~mol} \mathrm{CH}_{4}$
b. $0.750 \mathrm{~mol} \mathrm{SO}_{2}$
c. $1.08 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
d. $2.50 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
e. $1.45 \times 10^{-3} \mathrm{~mol} \mathrm{NH}_{3}$
3. Calculate the number of hydrogen atoms in:
a. $0.750 \mathrm{~mol} \mathrm{CH}_{4}$
b. $1.24 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c. $0.913 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
d. $2.45 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{10}$
e. $6.90 \times 10^{-4} \mathrm{~mol} \mathrm{NH}_{3}$
4. Calculate the number of ions in:
a. $\quad 1.00 \mathrm{~mol}$ of NaCl
b. 0.500 mol of $\mathrm{Na}_{2} \mathrm{O}$
c. 1.45 mol of MgCl_{2}
5. Calculate the following:
a. The number of ethanol molecules in a drop of ethanol $\left(2.30 \times 10^{-3} \mathrm{~g}\right)$.
b. The mass of one molecule of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$.
c. The amount (in mol) of O_{2} that contains 1.80×10^{22} molecules.
d. The mass of 3.01×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}$
e. The number of iodine atoms in $0.835 \mathrm{~mol}^{\mathrm{m}} \mathrm{I}_{2}$

Structure 1.4.4

Understandings:

- The empirical formula of a compound gives the simplest ratio of atoms of each element present in that compound.
- The molecular formula gives the actual number of atoms of each element present in a molecule.

Learning outcomes:

- Interconvert the percentage composition by mass and the empirical formula.
- Determine the molecular formula of a compound from its empirical formula and molar mass.

Empirical formula and molecular formula

- Empirical formula is defined as the lowest whole number ratio of atoms in a compound.
- Molecular formula is the actual number of atoms in a compound.

Example:

- Butane has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10}$
- The empirical formula is $\mathrm{C}_{2} \mathrm{H}_{5}$ - how was this determined?

Exercise: State the empirical formula of the following compounds:

1. $\mathrm{H}_{2} \mathrm{O}_{2}$
2. $\mathrm{C}_{2} \mathrm{H}_{6}$
3. $\mathrm{C}_{4} \mathrm{H}_{8}$
4. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
5. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4}$

Calculating empirical formula from percentage composition by mass

Example: The relative molecular mass of aluminium chloride is 267 and its composition by mass is 20.3% aluminium (Al) and 79.7% chlorine (Cl). Determine the empirical and molecular formula of aluminium chloride.

1. Check that the \% add up to 100%.
2. Divide the \% of each element by its relative atomic mass.
3. Divide each number in part (2) by the smallest ratio - this will give you the empirical formula of the compound.
4. To find the molecular formula from the empirical formula determine the mass of the empirical formula and divide the molecular formula by the mass of the empirical formula.

Exercises:

1. Compound B has the following percentage composition by mass: $C 26.7 \%$, O 71.1% and $\mathrm{H} 2.2 \%$. Calculate the empirical formula of compound B.
2. Compound C has the following percentage composition by mass: $48.6 \% \mathrm{C}, 10.8 \%$ $\mathrm{H}, 21.6 \% \mathrm{O}$ and $18.9 \% \mathrm{~N}$. Calculate the empirical formula of compound C .
3. Determine the molecular formula of each of the following given the empirical formula and the relative molecular mass, Mr
a. $\mathrm{CH}_{2}, M_{\mathrm{r}}=70$
b. $\mathrm{OH}, \mathrm{Mr}_{\mathrm{r}}=34$
c. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, \mathrm{Mr}_{\mathrm{r}}=90$
4. An organic compound A contains 62.0% by mass of carbon, 24.1% by mass of nitrogen, the remainder being hydrogen.
a. Determine the percentage by mass of hydrogen and the empirical formula of A.
b. The relative molecular mass of A is 116 . Determine the molecular formula of A.

Percentage composition by mass

- Percentage composition by mass is the percentage by mass of elements in a compound.

Example: Find the percentage by mass of carbon in ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$.

Exercises: Calculate the percentage by mass of carbon in the following.

1. CO_{2}
2. $\mathrm{C}_{2} \mathrm{H}_{6}$
3. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
4. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
5. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$

Calculating empirical formula from combustion analysis

Example: Menthol is an organic compound composed of C, H and O atoms. The complete combustion of 0.1005 g of menthol produces 0.2829 g of CO_{2} and 0.1159 g of $\mathrm{H}_{2} \mathrm{O}$. Calculate the empirical formula of menthol.

1. Calculate the mass of carbon in CO_{2} and convert to mol.
2. Calculate the mass of H in $\mathrm{H}_{2} \mathrm{O}$ and convert to mol.
3. Calculate the mass of O by subtracting the mass of carbon and mass of hydrogen from the original mass of menthol. Convert to amount in mol.
4. Divide each amount by the smallest to get the lowest whole number ratio.

Structure 1.4.5

Understandings:

- The molar concentration is determined by the amount of solute and the volume of solution.

Learning outcomes:

- Solve problems involving the molar concentration, amount of solute and volume of solution.

Additional notes:

- The use of square brackets to represent molar concentration is required.
- Units of concentration should include $\mathrm{g} \mathrm{dm}^{-3}$ and $\mathrm{mol} \mathrm{dm}^{-3}$ and conversion between these.
- The relationship $n=C V$ is given in the data booklet.

Calculating the concentration of a solution

- The concentration of a solution can be expressed in $\mathrm{mol} \mathrm{dm}^{-3}$ or $\mathrm{g} \mathrm{dm}^{-3}$.
- The equation for calculating concentration in $\mathrm{mol} \mathrm{dm}^{-3}$ is shown below.
- In this equation, volume must be in dm^{3} (to convert from cm^{3} to dm^{3}, divide by 1000).

$$
\begin{aligned}
& c\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)=\frac{\text { amount of solute }(\mathrm{mol})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)} \\
& C=\frac{n}{V} \quad \begin{array}{l}
C=\text { concentration in mol } \mathrm{dm}^{-3} \\
n=\text { amount in } \mathrm{mol} \\
V=\text { volume in } \mathrm{dm}^{3}
\end{array} \\
& n=c V \quad V=\frac{n}{c}
\end{aligned}
$$

- The equation for calculating the concentration in $\mathrm{g} \mathrm{dm}^{-3}$ is shown below.

$$
c\left(\mathrm{~g} \mathrm{dm}^{-3}\right)=\frac{\text { mass of solute }(\mathrm{g})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)}
$$

Example: 50.0 g of NaCl are dissolved in $100 \mathrm{~cm}^{3}$ of water which is then made up to $500.0 \mathrm{~cm}^{3}$ in a volumetric flask. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}^{-3}$ and $\mathrm{g} \mathrm{dm}^{-3}$.

Exercises:

1. Calculate the concentration (in $\mathrm{mol} \mathrm{dm}^{-3}$ and $\mathrm{g} \mathrm{dm}^{-3}$) of these solutions.
a. 10.6 g of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ in $1.00 \mathrm{dm}^{3}$ of solution.
b. 117 g of sodium chloride (NaCl) in $5.00 \mathrm{dm}^{3}$ of solution.
c. 0.830 g of potassium iodide (KI) in $25.0 \mathrm{~cm}^{3}$ of solution.
2. Calculate the amount (in mol) of solute in each of the following solutions.
a. $0.250 \mathrm{dm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonium chloride solution.
b. $200.0 \mathrm{~cm}^{3}$ of $0.800 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium carbonate solution.
c. $300.0 \mathrm{~cm}^{3}$ of $4.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.
3. Calculate the mass of solute in the following solutions.
a. $2.00 \mathrm{dm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide (KOH) solution.
b. $200.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ solution.
c. $25.0 \mathrm{~cm}^{3}$ of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulphate $\left(\mathrm{CeSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}\right)$ solution.

Structure 1.4.6

Understandings:

- Avogadro's law states that equal volumes of all gases measured under the same conditions of temperature and pressure contain equal numbers of molecules.

Learning outcomes:

- Solve problems involving the mole ratio of reactants and/or products and the volume of gases.

Avogadro's law

- Equal volumes of gases at the same temperature and pressure contain the same number of particles.
- At STP (273 K and 100 kPa):

Amount (mol)	1 mol H 2	$1 \mathrm{~mol} \mathrm{~N}_{2}$	1 mol O 2
Volume (dm ${ }^{3}$)	22.7	22.7	22.7
Number of particles	6.02×10^{23}	6.02×10^{23}	6.02×10^{23}

Example: $40 \mathrm{~cm}^{3}$ of CO reacts with $40 \mathrm{~cm}^{3}$ of O_{2}. What volume of CO_{2} is produced? What volume of the excess reactant remains?

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

Exercises:

1. What volume of sulfur trioxide, in cm^{3}, can be prepared using $40 \mathrm{~cm}^{3}$ sulfur dioxide and $20 \mathrm{~cm}^{3}$ oxygen gas by the following reaction? Assume all volumes are measured at the same temperature and pressure.

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

2. $5 \mathrm{dm}^{3}$ of carbon monoxide, $\mathrm{CO}_{(\mathrm{g})}$, and $2 \mathrm{dm}^{3}$ of oxygen, $\mathrm{O}_{2(\mathrm{~g})}$, at the same temperature and pressure are mixed together. What is the maximum volume of carbon dioxide, $\mathrm{CO}_{2(\mathrm{~g})}$, in dm^{3}, that can be formed? What volume of the excess reactant remains?

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

3. $100 \mathrm{~cm}^{3}$ of ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$, is burned in $400 \mathrm{~cm}^{3}$ of oxygen, producing carbon dioxide and some liquid water. Some oxygen remains unreacted (excess).

$$
\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Calculate the volume of carbon dioxide produced and the volume of oxygen remaining.

