Structure 1.4 Answers

IB CHEMISTRY SL

25				2		
\mathbf{M}	S	J	$\stackrel{\circ}{\mathrm{C}}$	$\mathrm{He}_{\text {Hemm }}$	M	
						Same

Structure 1.4.1

Understandings:

- The mole (mol) is the SI unit of amount of substance. One mole contains exactly the number of elementary entities given by the Avogadro constant.

Learning outcomes:

- Convert the amount of substance, n, to the number of specified elementary entities.

Additional notes:

- An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or a specified group of particles.
- The Avogadro constant N_{A} is given in the data booklet. It has the units mol^{-1}.

The mole and amount of substance

- The mole, symbol mol, is the SI unit of amount of substance (n).
- It is a measure of the number of specified elementary entities (an elementary entity can refer to an atom, a molecule, an ion, an electron, or any other particle).
- One mole contains exactly 6.02×10^{23} elementary entities.
- This is numerically equal to the Avogadro constant (L or N_{A}) which is $6.02 \times 10^{23} \mathrm{~mol}^{-1}$.

Elementary entity	Number of elementary entities in one mole
Atoms	6.02×10^{23}
Molecules	6.02×10^{23}
Ions	6.02×10^{23}
Formula units	6.02×10^{23}

Structure 1.4.2

Understandings:

- Masses of atoms are compared on a scale relative to ${ }^{12} \mathrm{C}$ and are expressed as relative atomic mass A_{r} and relative formula mass M_{r}.

Learning outcomes:

- Determine relative formula masses M_{r} from relative atomic masses A_{r}.

Additional notes:

- Relative atomic mass and relative formula mass have no units.
- The values of relative atomic masses given to two decimal places in the data booklet should be used in calculations.

Relative atomic mass and relative formula mass

- Relative atomic mass, A_{r}, is the weighted average mass of the naturally occurring isotopes of an element relative to $1 / 12$ the mass of an atom of carbon-12.
- The relative atomic mass scale is based on the isotope carbon-12 which has a mass of exactly 12 amu .
- Relative formula mass, M_{r}, is the weighted average mass of a substance relative to $1 / 12$ the mass of an atom of ${ }^{12} \mathrm{C}$.
- The M_{r} is the sum of the A_{r} of the atoms in a substance.
- Both relative atomic mass and relative formula mass do not have units.

Exercise: Calculate the relative formula masses of the following.

1. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad \mathrm{Mr}_{\mathrm{r}}=46.08$
2. $\mathrm{CH}_{3} \mathrm{COCH}_{3} \mathrm{Mr}_{\mathrm{r}}=58.09$
3. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{Mr}_{\mathrm{r}}=180.18$
4. $\mathrm{KCI} \mathrm{Mr}_{\mathrm{r}}=74.55$
5. $\mathrm{MgBr}_{2} \mathrm{Mr}_{\mathrm{r}}=184.11$

Structure 1.4.3

Understandings:

- Molar mass M has the units $\mathrm{g} \mathrm{mol}^{-1}$.

Learning outcomes:

- Solve problems involving the relationships between the number of particles, the amount of substance in moles and the mass in grams.

Additional notes:

- The relationship $n=m / M$ is given in the data booklet.

Molar mass (M)

- The molar mass (M) is the mass of one mole of a substance in grams.
- The unit for molar mass is $\mathrm{g} \mathrm{mol}^{-1}$.
- The molar mass of a substance is numerically equal to its relative atomic mass.
- To convert A_{r} to M, multiply by the molar mass constant, $M u$, which is approximately equal to $1 \mathrm{~g} \mathrm{~mol}^{-1}$.

Example: Determine the molar mass of $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$ is composed of 2 H atoms and 1 O atom. Find the relative atomic mass $\left(A_{r}\right)$ of the elements from the periodic table and add them together. Multiply by the molar mass constant to get the molar mass.
$(2 \times 1.01)+(1 \times 16.00)=18.02$
$18.02 \times 1 \mathrm{~g} \mathrm{~mol}^{-1}=18.02 \mathrm{~g} \mathrm{~mol}^{-1}$
The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $18.02 \mathrm{~g} \mathrm{~mol}^{-1}$

Exercise: determine the molar mass of the following.

Substance	Molar mass $\left(\mathbf{g ~ m o l}^{\mathbf{- 1}}\right)$	Substance	Molar mass $\left(\mathbf{g ~ m o l}^{-1}\right)$	Substance	Molar mass $\left(\mathbf{g ~ m o l}^{-1}\right)$
H_{2}	2.02	CO	44.01	CaCl_{2}	110.98
O_{2}	32.00	HCl	36.46	$\mathrm{Al}_{2} \mathrm{O}_{3}$	101.96
Cl_{2}	70.90	CH_{4}	16.05	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	80.04
I_{2}	253.80	NH_{3}	17.04	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	342.15

Calculations involving amount (n), mass (m) and molar mass (M)

- To convert from mass (in g) to amount (in mol), divide the mass of the substance by its molar mass.

$$
\begin{aligned}
& \operatorname{amount}(\mathrm{mol})=\frac{\operatorname{mass}(\mathrm{g})}{\operatorname{molar} \operatorname{mass}\left(\mathrm{g} \mathrm{~mol}^{-1}\right)} \\
& n(\mathrm{~mol})=\frac{m(\mathrm{~g})}{M\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)} \quad n=\frac{m}{M}
\end{aligned}
$$

- This equation can be rearranged to find calculate (m) and molar mass (M) :

$$
m=n \times M \quad M=\frac{m}{n}
$$

Exercises:

1. Calculate the amount (in mol) of the following.
a. 30.00 g Mg

$$
30.00 \div 24.31=1.234 \mathrm{~mol}
$$

f. $45.82 \mathrm{~g} \mathrm{CaCl}_{2}$ $45.82 \div 110.98=0.4129 \mathrm{~mol}$
b. $75.00 \mathrm{~g} \mathrm{O}_{2}$
$75.00 \div 32.00=2.344 \mathrm{~mol}$
g. $98.36 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$
$98.36 \div 101.96=0.9647 \mathrm{~mol}$
c. $26.93 \mathrm{~g} \mathrm{CuSO}_{4}$
$26.93 \div 159.61=0.1687 \mathrm{~mol}$
d. 15.00 g NaOH
$15.00 \div 40.00=0.3750 \mathrm{~mol}$
e. $1.78 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$
$1.78 \div 44.11=0.0404 \mathrm{~mol}$
h. $173.81 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$
$173.81 \div 80.04=2.172 \mathrm{~mol}$
i. $118.62 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$118.62 \div 342.15=0.3467 \mathrm{~mol}$
j. $261.04 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
$261.04 \div 159.69=1.635 \mathrm{~mol}$
2. Calculate the mass in grams of the following.
a. 3.00 mol Mg
$3.00 \times 24.31=72.93 \mathrm{~g}$
b. $0.100 \mathrm{~mol} \mathrm{O}_{2}$
$0.100 \times 32.00=3.20 \mathrm{~g}$
c. $0.400 \mathrm{~mol} \mathrm{CuSO}_{4}$
$0.400 \times 159.61=63.8 \mathrm{~g}$
d. 9.84 mol NaOH
$9.84 \times 40.00=394 \mathrm{~g}$
e. $0.270 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
$0.270 \times 44.11=11.9 \mathrm{~g}$
f. 0.600 mol CaCl 2
$0.600 \times 110.98=66.6 \mathrm{~g}$
g. $3.56 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
$3.56 \times 101.96=363 \mathrm{~g}$
h. $2.40 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$
$2.40 \times 80.04=192 \mathrm{~g}$
i. $0.850 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$0.850 \times 342.15=291 \mathrm{~g}$
j. $0.0593 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$
$0.0593 \times 159.69=9.47 \mathrm{~g}$

The relationship between number of particles, amount in $\mathbf{m o l}(n)$ and mass (m)

- One mole of any substance contains 6.02×10^{23} particles (atoms, molecules, formula units).
- The molar mass (M) of a substance is the mass (in g) of one mole of a substance.

Atoms Molecules Formula units	multiply by 6.02×10^{23} divide by 6.02×10^{23}	Amount in mol	divide by molar mass multiply by molar mass

Examples:

1. Calculate the number of $\mathrm{H}_{2} \mathrm{O}$ molecules in 18.02 g of pure water.

First, convert to amount (in mol):

$$
n=\frac{m}{M} \quad n=\frac{18.02}{18.02}=1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Next, convert to number of molecules:
One mole of any substance contains 6.02×10^{23} molecules
1 mol of $\mathrm{H}_{2} \mathrm{O}$ contains $6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
2. Calculate the mass of one molecule of $\mathrm{H}_{2} \mathrm{O}$.

One mole of $\mathrm{H}_{2} \mathrm{O}\left(6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}\right.$ molecules $)$ has a mass of 18.02 g
One molecule of $\mathrm{H}_{2} \mathrm{O}$ has a mass of $\frac{18.02}{6.02 \times 10^{23}}=2.99 \times 10^{-23} \mathrm{~g}$
3. Determine the number of H atoms in one mol of $\mathrm{H}_{2} \mathrm{O}$.

One molecule of $\mathrm{H}_{2} \mathrm{O}$ is composed of 2 H atoms and 1 O atom.
One mole of $\mathrm{H}_{2} \mathrm{O}$ has $6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
$2 \times 6.02 \times 10^{23}=1.20 \times 10^{24} \mathrm{H}$ atoms

Exercises:

1. Calculate the number of molecules in the following:
a. $0.500 \mathrm{~mol} \mathrm{CH}_{4}$ 3.01×10^{23} molecules CH_{4}
b. $0.750 \mathrm{~mol} \mathrm{SO}_{2}$ 4.52×10^{23} molecules SO_{2}
c. $1.08 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
6.50×10^{23} molecules $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
d. $2.50 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
1.51×10^{24} molecules $\mathrm{C}_{3} \mathrm{H}_{8}$
e. $1.45 \times 10^{-3} \mathrm{~mol} \mathrm{NH}_{3}$
8.73×10^{20} molecules NH_{3}
2. Calculate the total number of atoms in the following:
a. $0.500 \mathrm{~mol} \mathrm{CH}_{4}$ $3.01 \times 10^{23} \times 5=1.51 \times 10^{24}$
b. $0.750 \mathrm{~mol} \mathrm{SO}_{2}$
$4.52 \times 10^{23} \times 3=1.36 \times 10^{24}$
c. $1.08 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$6.50 \times 10^{23} \times 9=5.85 \times 10^{24}$
d. $2.50 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
$1.51 \times 10^{24} \times 11=1.66 \times 10^{25}$
e. $1.45 \times 10^{-3} \mathrm{~mol} \mathrm{NH}_{3}$
$8.73 \times 10^{20} \times 4=3.49 \times 10^{21}$
3. Calculate the number of hydrogen atoms in:
a. $0.750 \mathrm{~mol} \mathrm{CH}_{4}$
$6.02 \times 10^{23} \times 4 \times 0.750=1.81 \times 10^{24} \mathrm{H}$ atoms
b. $1.24 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$6.02 \times 10^{23} \times 6 \times 1.24=4.48 \times 10^{24} \mathrm{H}$ atoms
c. $0.913 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
$6.02 \times 10^{23} \times 8 \times 0.913=4.40 \times 10^{24} \mathrm{H}$ atoms
d. $2.45 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{10}$
$6.02 \times 10^{23} \times 10 \times 2.45=1.47 \times 10^{25} \mathrm{H}$ atoms
e. $6.90 \times 10^{-4} \mathrm{~mol} \mathrm{NH}_{3}$
$6.02 \times 10^{23} \times 3 \times 6.90 \times 10^{-4}=1.25 \times 10^{21} \mathrm{H}$ atoms
4. Calculate the number of ions in:
a. 1.00 mol of $\mathrm{NaCl}\left(\mathrm{Na}^{+} \mathrm{Cl}^{-}\right) 6.02 \times 10^{23} \times 2 \times 1.00=1.20 \times 10^{24}$ ions
b. 0.500 mol of $\mathrm{Na}_{2} \mathrm{O}\left(2 \times \mathrm{Na}^{+} \mathrm{O}^{2-}\right) 6.02 \times 10^{23} \times 3 \times 0.500=9.03 \times 10^{23}$ ions
c. 1.45 mol of $\mathrm{MgCl}_{2}\left(\mathrm{Mg}^{2+} 2 \times \mathrm{Cl}^{-}\right) 6.02 \times 10^{23} \times 3 \times 1.45=2.62 \times 10^{24}$ ions
5. Calculate the following:
a. The number of ethanol molecules in a drop of ethanol $\left(2.30 \times 10^{-3} \mathrm{~g}\right)$.
$M_{r} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46.07 \mathrm{~g} \mathrm{~mol}^{-1}$
$n=m \div M=2.30 \times 10^{-3} \div 46.07=4.99 \times 10^{-5} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$4.99 \times 10^{-5} \times 6.02 \times 10^{23}=3.00 \times 10^{19}$ molecules $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b. The mass of one molecule of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$.

Mass of one molecule $=30.07 \div 6.02 \times 10^{23}=5.00 \times 10^{-23} \mathrm{~g}$
c. The amount (in mol) of O_{2} that contains 1.80×10^{22} molecules.
$1.8 \times 10^{22} \div 6.02 \times 10^{23}=0.0299 \mathrm{~mol} \mathrm{O}_{2}$
d. The mass of 3.01×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}$.
$3.01 \times 10^{23} \div 6.02 \times 10^{23}=0.500 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$m=n M=0.500 \times 18.02=9.01 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
e. The number of iodine atoms in $0.835 \mathrm{~mol}_{\mathrm{of}} \mathrm{I}_{2}$ $0.835 \times 6.02 \times 10^{23}=5.03 \times 10^{23}$ molecules of I_{2}

One molecule of $\mathrm{I}_{2}=2$ atoms of iodine $5.03 \times 10^{23} \times 2=1.01 \times 10^{24}$ iodine atoms

Structure 1.4.4

Understandings:

- The empirical formula of a compound gives the simplest ratio of atoms of each element present in that compound.
- The molecular formula gives the actual number of atoms of each element present in a molecule.

Learning outcomes:

- Interconvert the percentage composition by mass and the empirical formula.
- Determine the molecular formula of a compound from its empirical formula and molar mass.

Empirical formula and molecular formula

- Empirical formula is defined as the lowest whole number ratio of atoms in a compound.
- Molecular formula is the actual number of atoms in a compound.

Example:

- Butane has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10}$
- The empirical formula is $\mathrm{C}_{2} \mathrm{H}_{5}$ - how was this determined? Divide the 4 and 10 by 2 to give 2 and 5 .

Exercise: State the empirical formula of the following compounds:

1. $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{HO}$
2. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{CH}_{3}$
3. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{CH}_{2}$
4. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{CH}_{2} \mathrm{O}$
5. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{2}$

Calculating empirical formula from percentage composition by mass

Example:

- The relative molecular mass of aluminium chloride is 267 and its composition by mass is 20.3% aluminium (Al) and 79.7% chlorine (CI). Determine the empirical and molecular formula of aluminium chloride.

1. Check that the \% add up to 100%.
$20.3 \%+79.7 \%=100 \%$
2. Divide the \% of each element by its relative atomic mass.

Al	Cl
$\frac{20.3}{26.98}$	$\underline{79.7}$
35.45	

3. Divide each number in part (2) by the smallest ratio - this will give you the empirical formula of the compound.

Al	Cl
$\frac{0.752}{2.752}$	$\frac{2.25}{0.752}$
1	3

Empirical formula AlCl_{3}
4. To find the molecular formula from the empirical formula determine the mass of the empirical formula and divide the molecular formula by the mass of the empirical formula.
$\frac{267}{133.33}=2.00$
Molecular formula $\mathrm{Al}_{2} \mathrm{Cl}_{6}$

Exercises:

1. Compound B has the following percentage composition by mass: $C 26.7 \%$, O 71.1% and $\mathrm{H} 2.2 \%$. Calculate the empirical formula of compound B.

C	H	O
26.7	2.2	71.1
12.01	1.01	16.00
2.22	2.2	4.44
2.2	2.2	2.2
1	1	2

Empirical formula: CHO_{2}

2. Compound C has the following percentage composition by mass: $48.6 \% \mathrm{C}, 10.8 \%$ H, 21.6\% O and 18.9% N. Calculate the empirical formula of compound C.

C	H	O	N
48.6	10.8	21.6	18.9
12.01	1.01	16.00	14.01
4.04	10.7	1.35	1.35
1.35	1.35	1.35	1.35
3	8	1	1
Empirical formula: $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{ON}$			

3. Determine the molecular formula of each of the following given the empirical formula and the relative molecular mass, M_{r}
a. $\mathrm{CH}_{2}, M_{\mathrm{r}}=70$
$\mathrm{CH}_{2}, M_{r}=70(12.01)+(2 \times 1.01)=14.03$
$70 \div 14.03=5$
$\mathrm{CH}_{2} \times 5=\mathrm{C}_{5} \mathrm{H}_{10}$
b. $\mathrm{OH}, \mathrm{Mr}_{\mathrm{r}}=34$
$\mathrm{OH}, M_{\mathrm{r}}=34(16.00)+(1.01)=17.01$
$34 \div 17.01=2$
$\mathrm{OH} \times 2=\mathrm{H}_{2} \mathrm{O}_{2}$
c. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, \mathrm{Mr}_{\mathrm{r}}=90$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, M_{\mathrm{r}}=90(2 \times 12.01)+(5 \times 1.01)+(16.00)=45.07$
$90 \div 45.07=2$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \times 2=\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
4. An organic compound A contains 62.0% by mass of carbon, 24.1% by mass of nitrogen, the remainder being hydrogen.
a. Determine the percentage by mass of hydrogen and the empirical formula of A.

C	N	H
62.0	24.1	13.9
12.01	14.01	1.01
5.16	1.72	13.8
1.72	1.72	1.72

Empirical formula: $\mathrm{C}_{3} \mathrm{NH}_{8}$

b. The relative molecular mass of A is 116 . Determine the molecular formula of A.
$(3 \times 12.01)+(14.01)+(8 \times 1.01)=58.12$
$116 \div 58.12=2$
$2 \times \mathrm{C}_{3} \mathrm{NH}_{8}=\mathrm{C}_{6} \mathrm{~N}_{2} \mathrm{H}_{16}$
Molecular formula: $\mathrm{C}_{6} \mathrm{~N}_{2} \mathrm{H}_{16}$

Percentage composition by mass

- Percentage composition by mass is the percentage by mass of elements in a compound.

Example: Find the percentage by mass of carbon in ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$.
$(24.02 / 46.08) \times 100=52.1 \%$

Exercises: Calculate the percentage by mass of carbon in the following.

1. CO_{2}
$(12.0144 .01) \times 100=27.3 \%$
2. $\mathrm{C}_{2} \mathrm{H}_{6}$
$(24.02 \div 30.08) \times 100=79.9 \%$
3. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
$(72.06 \div 123.11) \times 100=58.5 \%$
4. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$(72.06 \div 180.16) \times 100=40.0 \%$
5. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
$(96.08 \div 120.16) \times 100=80.0 \%$

Calculating empirical formula from combustion analysis

Example: Menthol is an organic compound composed of C, H and O atoms. The complete combustion of 0.1005 g of menthol produces 0.2829 g of CO_{2} and 0.1159 g of $\mathrm{H}_{2} \mathrm{O}$. Calculate the empirical formula of menthol.

1. Calculate the mass of carbon in CO_{2} and convert to mol.

Calculate the mass of C in 0.2829 g of $\mathrm{CO}_{2} \quad$ Convert to amount in mol (n)

$$
\frac{12.01}{44.01} \times 0.2829=0.07720 \mathrm{~g} \text { of } \mathrm{C} \quad n=\frac{0.07720}{12.01}=6.428 \times 10^{-3} \mathrm{~mol} \mathrm{C}
$$

2. Calculate the mass of H in $\mathrm{H}_{2} \mathrm{O}$ and convert to mol.

Calculate the mass of H in 0.1159 g of $\mathrm{H}_{2} \mathrm{O} \quad$ Convert to amount in $\mathrm{mol}(n)$

$$
\frac{2.02}{18.02} \times 0.1159=0.01299 \mathrm{~g} \text { of } \mathrm{H} \quad n=\frac{0.01299}{1.01}=0.01286 \mathrm{~mol} \mathrm{H}
$$

3. Calculate the mass of O by subtracting the mass of carbon and mass of hydrogen from the original mass of menthol. Convert to amount in mol.

Calculate the mass of O in 0.1005 g of menthol
$0.1005-0.07720-0.01299=0.01031 \mathrm{~g} \mathrm{O}$

$$
n=\frac{0.01031}{16.00}=6.444 \times 10^{-4} \mathrm{~mol} \mathrm{O}
$$

Convert to amount in mol (n)
4. Divide each amount by the smallest to get the lowest whole number ratio.

$6.428 \times 10^{-3} \mathrm{~mol} \mathrm{C}$	0.01286 mol H	$6.444 \times 10^{-4} \mathrm{~mol} \mathrm{O}$
6.444×10^{-4}	6.444×10^{-4}	6.444×10^{-4}
10	20	1

Empirical formula: $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$

Structure 1.4.5

Understandings:

- The molar concentration is determined by the amount of solute and the volume of solution.

Learning outcomes:

- Solve problems involving the molar concentration, amount of solute and volume of solution.

Additional notes:

- The use of square brackets to represent molar concentration is required.
- Units of concentration should include $\mathrm{g} \mathrm{dm}^{-3}$ and $\mathrm{mol} \mathrm{dm}^{-3}$ and conversion between these.
- The relationship $n=C V$ is given in the data booklet.

Calculating the concentration of a solution

- The concentration of a solution can be expressed in $\mathrm{mol} \mathrm{dm}^{-3}$ or $\mathrm{g} \mathrm{dm}^{-3}$.
- The equation for calculating concentration in $\mathrm{mol} \mathrm{dm}^{-3}$ is shown below.
- In this equation, volume must be in dm^{3} (to convert from cm^{3} to dm^{3}, divide by 1000).

$$
\begin{gathered}
c\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)=\frac{\text { amount of solute }(\mathrm{mol})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)} \\
C=\frac{n}{V} \quad \begin{array}{l}
c=\text { concentration in mol dm } \\
\begin{array}{l}
n=\text { amount in } \mathrm{mol} \\
V=\text { volume in } \mathrm{dm}^{3}
\end{array} \\
n=c V
\end{array} \quad V=\frac{n}{c}
\end{gathered}
$$

- The equation for calculating the concentration in $\mathrm{g} \mathrm{dm}^{-3}$ is shown below.

$$
c\left(\mathrm{~g} \mathrm{dm}^{-3}\right)=\frac{\text { mass of solute }(\mathrm{g})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)}
$$

Example: 50.0 g of NaCl are dissolved in $100 \mathrm{~cm}^{3}$ of water which is then made up to $500.0 \mathrm{~cm}^{3}$ in a volumetric flask. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}^{-3}$ and $\mathrm{g} \mathrm{dm}^{-3}$.

In $\mathrm{g} \mathrm{dm}^{-3}$
$c=$ mass of solute \div volume of solution
$c=50.0 \div(500.0 \div 1000)$
$c=100.0 \mathrm{~g} \mathrm{dm}^{-3}$
In mol dm-3
Convert from mass to amount in mol
$n=m \div M$
$n=50.0 \div 58.44=0.856 \mathrm{~mol} \mathrm{NaCl}$
$c=n \div V$
$c=0.856 \div(500 \div 1000)$
$c=1.71 \mathrm{~mol} \mathrm{dm}^{-3}$

Exercises:

1. Calculate the concentration (in $\mathrm{mol} \mathrm{dm}^{-3}$ and $\mathrm{g} \mathrm{dm}^{-3}$) of these solutions:
a. 10.6 g of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ in $1.00 \mathrm{dm}^{3}$ of solution.

$$
\begin{aligned}
& n=m \div M \\
& n=10.6 \div 105.99=0.100 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& c=n \div V \\
& c=0.100 \div(1.00) \\
& c=0.100 \mathrm{~mol} \mathrm{dm}^{-3} \\
& c=10.6 \div(1.00) \\
& c=10.6 \mathrm{~g} \mathrm{dm}^{-3}
\end{aligned}
$$

b. 117 g of sodium chloride (NaCl) in $5.00 \mathrm{dm}^{3}$ of solution.

$$
\begin{aligned}
& n=m \div M \\
& n=117 \div 58.44=2.00 \mathrm{~mol} \mathrm{NaCl} \\
& c=\mathrm{n} \div \mathrm{V} \\
& c=2.00 \div 5.00 \\
& c=0.400 \mathrm{~mol} \mathrm{dm}^{-3} \\
& c=117 \div 5.00 \\
& c=23.4 \mathrm{~g} \mathrm{dm}^{-3}
\end{aligned}
$$

c. 0.830 g of potassium iodide (KI) in $25.0 \mathrm{~cm}^{3}$ of solution.

$$
\begin{aligned}
& n=m \div M \\
& \mathrm{n}=0.830 \div 166.00=5.00 \times 10^{-3} \mathrm{~mol} \mathrm{KI} \\
& c=n \div V \\
& c=5.00 \times 10^{-3} \div(25.0 \div 1000) \\
& c=0.200 \mathrm{~mol} \mathrm{dm}^{-3} \\
& c=0.830 \div(25.0 \div 1000) \\
& c=33.2 \mathrm{~g} \mathrm{dm}^{-3}
\end{aligned}
$$

2. Calculate the amount (in mol) of solute in each of the following solutions:
a. $0.250 \mathrm{dm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonium chloride solution.
$n=c V$
$n=0.400 \times 0.250$
$n=0.100 \mathrm{~mol}$
b. $200.0 \mathrm{~cm}^{3}$ of $0.800 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium carbonate solution.

$$
\begin{aligned}
& n=c V \\
& n=0.800 \times(200.0 \div 1000) \\
& n=0.160 \mathrm{~mol}
\end{aligned}
$$

c. $300.0 \mathrm{~cm}^{3}$ of $4.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.

$$
\begin{aligned}
& n=c V \\
& n=4.00 \times(300.0 \div 1000) \\
& n=1.20 \mathrm{~mol}
\end{aligned}
$$

3. Calculate the mass of solute in the following solutions:
a. $2.00 \mathrm{dm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide (KOH) solution.

$$
\begin{aligned}
& n=c V \\
& n=0.200 \times 2.00 \\
& n=0.400 \mathrm{~mol} \\
& m=n M \\
& m=0.400 \times 56.11 \\
& m=22.6 \mathrm{~g} \mathrm{KOH}
\end{aligned}
$$

b. $200.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ solution.

$$
\begin{aligned}
& n=c V \\
& n=0.100 \times(200.0 \div 1000) \\
& n=0.0200 \mathrm{~mol} \\
& m=n M \\
& m=0.0200 \times 105.99 \\
& m=2.12 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

c. $25.0 \mathrm{~cm}^{3}$ of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulphate $\left(\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}\right)$ solution.

$$
\begin{aligned}
& n=c V \\
& n=0.0500 \times(25.0 \div 1000) \\
& n=1.25 \times 10^{-3} \mathrm{~mol} \\
& m=n M \\
& m=1.25 \times 10^{-3} \times 249.72 \\
& m=0.312 \mathrm{~g} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Structure 1.4.6

Understandings:

- Avogadro's law states that equal volumes of all gases measured under the same conditions of temperature and pressure contain equal numbers of molecules.

Learning outcomes:

- Solve problems involving the mole ratio of reactants and/or products and the volume of gases.

Avogadro's law

- Equal volumes of gases at the same temperature and pressure contain the same number of particles.
- At STP (273 K and 100 kPa):

Amount (mol)	1 mol H	$1 \mathrm{~mol} \mathrm{~N}_{2}$	1 mol O 2
Volume (dm ${ }^{3}$)	22.7	22.7	22.7
Number of particles	6.02×10^{23}	6.02×10^{23}	6.02×10^{23}

Example: $40 \mathrm{~cm}^{3}$ of CO reacts with $40 \mathrm{~cm}^{3}$ of O_{2}. What volume of CO_{2} is produced? What volume of the excess reactant remains?

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

Molar ratio of CO to O_{2} is $2: 1$
$40 \mathrm{~cm}^{3}$ of CO reacts with $20 \mathrm{~cm}^{3}$ of O_{2} (molar ratio is 2:1)
Volume of O_{2} is $40 \mathrm{~cm}^{3}$, therefore O_{2} is excess reactant.
Excess reactant remaining $=40-20=20 \mathrm{~cm}^{3}$ of O_{2}

Exercises:

1. What volume of sulfur trioxide, in cm^{3}, can be prepared using $40 \mathrm{~cm}^{3}$ sulfur dioxide and $20 \mathrm{~cm}^{3}$ oxygen gas by the following reaction? Assume all volumes are measured at the same temperature and pressure.

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

Ratio of SO_{2} to O_{2} is $2: 1$
$40 \mathrm{~cm}^{3}$ of SO_{2} would react with $20 \mathrm{~cm}^{3}$ of O_{2} to produce $40 \mathrm{~cm}^{3}$ of SO_{3}
2. $5 \mathrm{dm}^{3}$ of carbon monoxide, $\mathrm{CO}_{(\mathrm{g})}$, and $2 \mathrm{dm}^{3}$ of oxygen, $\mathrm{O}_{2(\mathrm{~g})}$, at the same temperature and pressure are mixed together. What is the maximum volume of carbon dioxide, $\mathrm{CO}_{2(\mathrm{~g})}$, in dm^{3}, that can be formed? What volume of the excess reactant remains?

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

Ratio of CO to O_{2} is $2: 1$
$5 \mathrm{dm}^{3}$ of CO would need $5 \div 2=2.5 \mathrm{dm}^{3}$ of O_{2} to react completely.
Therefore, O_{2} is the limiting reactant and CO is the excess reactant.
Ratio of O_{2} to CO_{2} is $1: 2$, therefore, $2 \mathrm{dm}^{3}$ of O_{2} would produce $4 \mathrm{dm}^{3}$ of CO_{2} $2 \mathrm{dm}^{3}$ of O_{2} reacts with $4 \mathrm{dm}^{3}$ of $\mathrm{CO}, 5-4=1 \mathrm{dm}^{3}$ of CO remains.
3. $100 \mathrm{~cm}^{3}$ of ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$, is burned in $400 \mathrm{~cm}^{3}$ of oxygen, producing carbon dioxide and some liquid water. Some oxygen remains unreacted (excess).

$$
\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Calculate the volume of carbon dioxide produced and the volume of oxygen remaining.
Molar ratio of reactants and products is 1:3:2:2 $100 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$ reacts with $300 \mathrm{~cm}^{3}$ of O_{2} to produce $200 \mathrm{~cm}^{3}$ of CO_{2} and $200 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}$
Volume of O_{2} remaining: $400-300=100 \mathrm{~cm}^{3}$

