HISJCTRELIL
 Triontals tor aB ehemisty

$$
\text { Structure } 1.4
$$

WIS J OREML
 Tribortals lor aB Ghemisary

The mole concept

How many carbon atoms are there in 1.00 mol of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?
How many hydrogen atoms are there in 2.00 mol of methane, CH_{4} ?
How many Na^{+}ions are there in 1.00 mol of NaCl ? What is the total number of ions in 0.50 mol of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$?

The mole, symbol mol, is the SI unit for amount of substance (n).
One mole contains exactly $6.02214076 \times 10^{23}$ elementary entities.

$$
6.02 \times 10^{23}
$$

The Avogadro constant, L or N_{A} is:

$$
6.02 \times 10^{23} \mathrm{~mol}^{-1}
$$

Elementary entity

Number of elementary entities in one mole

Atoms

Molecules

Ions

Formula units
6.02×10^{23}
6.02×10^{23}
6.02×10^{23}
6.02×10^{23}

Determine the number of chlorine molecules and chlorine atoms in 1.00 mol of chlorine gas, $\mathrm{Cl}_{\mathbf{2}}$.

$6.02 \times 10^{23} \times$

Cl_{2} molecules
 6.02×10^{23}

Cl atoms

$$
2 \times 6.02 \times 10^{23}=1.20 \times 10^{24}
$$

Determine the number of hydrogen atoms and oxygen atoms in 0.500 mol of water, $\mathrm{H}_{2} \mathrm{O}$.

$0.500 \times 6.02 \times 10^{23} \times$

H atoms $\quad 2 \times 0.500 \times 6.02 \times 10^{23}=6.02 \times 10^{23}$ 0 atoms $\quad 0.500 \times 6.02 \times 10^{23}=3.01 \times 10^{23}$

Determine the number of carbon atoms, hydrogen atoms and oxygen atoms in 0.250 mol of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.

$0.250 \times 6.02 \times 10^{23} \times$

$$
\begin{array}{ll}
\text { C atoms } & 2 \times 0.250 \times 6.02 \times 10^{23}=3.01 \times 10^{23} \\
\hline H \text { atoms } & 6 \times 0.250 \times 6.02 \times 10^{23}=9.03 \times 10^{23} \\
O \text { atoms } & 0.250 \times 6.02 \times 10^{23}=1.51 \times 10^{23}
\end{array}
$$

In one mole of sodium chloride (NaCl) there are $6.02 \times 10^{23} \mathrm{NaCl}$ formula units.

NaCl is an ionic compound therefore it does not form molecules.

One mole of NaCl has 6.02×10^{23} sodium ions and 6.02×10^{23} chloride ions (total number of ions $=1.20 \times 1 \mathbf{1 0}^{\mathbf{2 4}}$).

The mole concept

Determine the number of magnesium ions and chloride ions in $\mathbf{1 . 0 0} \mathbf{~ m o l}$ of magnesium chloride, $\mathbf{M g C l}_{\mathbf{2}}$.

$6.02 \times 10^{23} \times \mathrm{MgCl}_{2}$

Mg^{2+} ions	6.02×10^{23}
Cl^{-}ions	$2 \times 6.02 \times 10^{23}=1.20 \times 10^{24}$

Determine the number of protons, neutrons and electrons in 0.750 mol of carbon- $\mathbf{1 2}$ atoms.

$0.750 \times 6.02 \times 10^{23} \times$ ${ }_{6}^{12} \mathrm{C}$

Protons $\quad 0.750 \times 6 \times 6.02 \times 10^{23}=2.71 \times 10^{24}$
Electrons $\quad 0.750 \times 6 \times 6.02 \times 10^{23}=2.71 \times 10^{24}$
Neutrons
$0.750 \times 6 \times 6.02 \times 10^{23}=2.71 \times 10^{24}$

How many carbon atoms are there in 1.00 mol of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$? $1.20 \times 10^{24} \mathrm{C}$ atoms
How many hydrogen atoms are there in $\mathbf{2 . 0 0} \mathbf{~ m o l}$ of methane, CH_{4} ? $4.82 \times 10^{24} \mathrm{H}$ atoms How many Na^{+}ions are there in 1.00 mol of NaCl ? $6.02 \times 10^{23} \mathrm{Na}^{+}$ions
What is the total number of ions in 0.50 mol of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} ? 9.03 \times 10^{23}$ ions

HMSJ ORMELI
 Trutortals lor aB chemfisuy

$$
\begin{gathered}
\text { The mole concept } \\
\text { part } 2
\end{gathered}
$$

What is the mass of one molecule of ethane,
$\mathrm{C}_{2} \mathrm{H}_{6}$?
How many $\mathrm{H}_{2} \mathrm{O}$ molecules are there in 50.0 g of $\mathrm{H}_{2} \mathrm{O}$?
What is the mass of 1.81×10^{24} molecules of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?
How many formula units are there in 25.0 g of NaCl ?

What is the mass of one molecule of ethane,
$\mathrm{C}_{2} \mathrm{H}_{6}$?
How many $\mathrm{H}_{2} \mathrm{O}$ molecules are there in 50.0 g of $\mathrm{H}_{2} \mathrm{O}$?
What is the mass of 1.81×10^{24} molecules of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?
How many formula units are there in 25.0 g of NaCl ?

How many carbon atoms are there in 1.00 mol of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$? $1.20 \times 10^{24} \mathrm{C}$ atoms
How many hydrogen atoms are there in $\mathbf{2 . 0 0} \mathbf{~ m o l}$ of methane, CH_{4} ? $4.82 \times 10^{24} \mathrm{H}$ atoms How many Na^{+}ions are there in 1.00 mol of NaCl ? $6.02 \times 10^{23} \mathrm{Na}^{+}$ions
What is the total number of ions in 0.50 mol of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} ? 9.03 \times 10^{23}$ ions

HISJ OTRELL
 Trusortals lor aB Ghemistiy

$$
\begin{gathered}
\text { Relative atomic mass } \\
\text { and formula mass }
\end{gathered}
$$

Relative atomic mass, A_{r}, is the weighted average mass of the naturally occurring isotopes of an element relative to $\mathbf{1 / 1 2}$ the mass of an atom of carbon-12.

The relative atomic mass scale is based on the isotope carbon- 12 which has a mass of exactly 12 amu .

Atomic number
Element
Relative atomic
mass

1	12	17	26
\mathbf{H}	Mg	Cl	Fe
1.01	24.31	35.45	55.85

Element	Relative atomic mass	Mass compared to ${ }^{12} \mathrm{C}$
Hydrogen	1.01	≈ 12 times lighter
Helium	4.00	≈ 3 times lighter
Magnesium	24.31	≈ 2 times heavier
Phosphorus	30.07	≈ 2.5 times heavier
Chlorine	35.45	≈ 3 times heavier

$$
\begin{array}{c|c|}
\hline \text { Isotope } & \text { Percent abundance (\%) } \\
\hline{ }^{24} \mathrm{Mg} & 78.99 \\
{ }^{25} \mathrm{Mg} & 10.00 \\
{ }^{26} \mathrm{Mg} & 11.01 \\
A_{r}=\frac{(24 \times 78.99)+(25 \times 10.00)+(26 \times 11.01)}{} \begin{array}{c}
100 \\
A_{r}=24.32
\end{array}
\end{array}
$$

Relative formula mass, M_{r}, is the weighted average mass of a substance relative to $1 / 12$ the mass of an atom of ${ }^{12} \mathrm{C}$. The M_{r} is the sum of the A_{r} of the atoms in the substance.

Substance	Atoms	Relative formula mass
H_{2}	$2 \times \mathrm{H}(1.01)$	2.02
$\mathrm{H}_{2} \mathrm{O}$	$2 \times \mathrm{H}(1.01)$ $1 \times \mathrm{O}(16.00)$	18.02
$\mathrm{C}_{2} \mathrm{H}_{6}$	$2 \times \mathrm{C}(12.01)$ $6 \times \mathrm{H}(1.01)$	30.08

Relative formula mass, M_{r}, is the weighted average mass of a substance relative to $1 / 12$ the mass of an atom of carbon-12.
It is the sum of the A_{r} of the atoms in the substance.

$H_{2} M_{r}=2.02$

$\mathrm{H}_{2} \mathrm{O} \mathrm{M}_{\mathrm{r}}=18.02$

$\mathrm{C}_{2} \mathrm{H}_{6} M_{\mathrm{r}}=30.08$

Relative formula mass is also used for substances that do not form molecules, such as ionic compounds.

$$
\begin{array}{cc}
11 & 17 \\
\mathbf{N a} & \mathbf{C l} \\
22.99 & 35.45
\end{array}
$$

The relative formula mass of sodium chloride, $\mathbf{N a C l}$, is 58.44

HISJOTRELIL
 Triontals tor aB ehemisty

Molar mass

Molar mass (M) is the mass in grams of one mole of a substance ($\mathrm{g} \mathrm{mol}^{-1}$).
One mole of substance contains 6.02×10^{23} particles.
The molar mass of a substance is numerically equal to its relative atomic mass.

Atomic number	6	12	16	26
Element	C	Mg	S	Fe
Relative atomic mas	12.01	24.31	32.07	55.85

To convert A_{r} to \boldsymbol{M}, multiply by the molar mass constant, M_{u}, which is approximately equal to $1 \mathrm{~g} \mathrm{~mol}^{-1}$

Element	Relative atomic mass	Molar mass (g mol${ }^{-1}$)
C	12.01	12.01
Mg	24.31	24.31
S	32.07	32.07
Fe	55.85	55.85

Determine the molar mass of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.

2 carbon atoms $\quad A_{r}=12.01$
1 oxygen atom $\quad A_{r}=16.00$
6 hydrogen atoms $A_{r}=1.01$

$M_{\mathrm{r}}=(2 \times 12.01)+16.00+(6 \times 1.01)=46.08$
$M=46.08 \times M_{\mathrm{u}}\left(\approx 1 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
$M=46.08 \mathrm{~g} \mathrm{~mol}^{-1}$

Substance

Relative molecular mass/formula mass

Molar mass \boldsymbol{M}
($\mathrm{g} \mathrm{mol}^{-1}$) 32.00 18.02 16.05
58.44
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$\mathrm{Al}_{2} \mathrm{O}_{3}$
101.96
101.96

HISJ OTRELL
 Trusortals lor aB Ghemistiy

Calculating amount of
substance How to calculate the amount (in mol) of a substance from its mass (m) and molar mass (M).

$$
\text { amount of substance }(\mathrm{mol})=\frac{\operatorname{mass}(\mathrm{g})}{\operatorname{molar} \operatorname{mass}\left(\mathrm{g} \mathrm{~mol}^{-1}\right)}
$$

$$
n(\mathrm{~mol})=\frac{m(\mathrm{~g})}{M\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)} \quad n=\frac{m}{M}
$$

$\operatorname{mass}(\mathrm{g})=\operatorname{amount}(\mathrm{mol}) \times \operatorname{molar} \operatorname{mass}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$

$$
m=n M
$$

$$
\begin{gathered}
\operatorname{molar} \operatorname{mass}\left(\mathrm{g} \mathrm{~mol}^{-1}\right)=\frac{\operatorname{mass}(\mathrm{g})}{\operatorname{amount}(\mathrm{mol})} \\
M=\frac{m}{n}
\end{gathered}
$$

$M\left(\mathrm{O}_{2}\right)=16.00 \times 2=32.00 \mathrm{~g} \mathrm{~mol}^{-1}$
$n\left(O_{2}\right)=\frac{16.00 \mathrm{~g}}{32.00 \mathrm{~g} \mathrm{~mol}^{-1}}$
$n\left(0_{2}\right)=0.5000 \mathrm{~mol}$ sample of $\mathrm{H}_{2} \mathrm{O}$.
$M\left(\mathrm{H}_{2} \mathrm{O}\right)=16.00+(2 \times 1.01)=18.02 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{100.0 \mathrm{~g}}{18.02 \mathrm{~g} \mathrm{~mol}^{-1}}
$$

$$
n\left(\mathrm{H}_{2} \mathrm{O}\right)=5.549 \mathrm{~mol}
$$ sample of NaCl .

$M(\mathrm{NaCl})=22.99+35.45=58.44 \mathrm{~g} \mathrm{~mol}^{-1}$
$n(\mathrm{NaCl})=\frac{50.00 \mathrm{~g}}{58.44 \mathrm{~g} \mathrm{~mol}^{-1}}$
$n(\mathrm{NaCl})=0.8556 \mathrm{~mol}$ Calculate the amount (in mol) of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ in a 75.23 g sample of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$.
$M\left(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}\right)=58.69+(2 \times 14.01)+(6 \times 16.00)=182.71 \mathrm{~g} \mathrm{~mol}^{-1}$
$n\left(N i\left(\mathrm{NO}_{3}\right)_{2}\right)=\frac{75.23 \mathrm{~g}}{182.71 \mathrm{~g} \mathrm{~mol}^{-1}}$
$n\left(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}\right)=0.4117 \mathrm{~mol}$

HISJ OTRELL
 Tribortals lor aB Ghemisary

Calculating mass (g)
from amount (in mol)

$n(\mathrm{~mol})=\frac{m(\mathrm{~g})}{M\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)} \quad n=\frac{m}{M}$

$\operatorname{mass}(\mathbf{g})=\operatorname{amount}(\mathbf{m o l}) \times \operatorname{molar} \operatorname{mass}\left(\mathbf{g ~ m o l}^{-1}\right)$

$$
\boldsymbol{m}=\boldsymbol{n} M
$$

Calculate the mass (in g) of 0.6437 mol of CaCO_{3}.

$M\left(\mathrm{CaCO}_{3}\right)=40.08+12.01+(3 \times 16.00)$ $M\left(\mathrm{CaCO}_{3}\right)=100.09 \mathrm{~g} \mathrm{~mol}^{-1}$ $m=n M$
$m=0.6437 \mathrm{~mol} \times 100.09 \mathrm{~g} \mathrm{~mol}^{-1}$ $m=64.43 \mathrm{~g}$

Calculate the mass (in g) of 0.8539 mol of AlCl_{3}

$M\left(\mathrm{AlCl}_{3}\right)=26.98+(3 \times 35.45)$ $M\left(\mathrm{AlCl}_{3}\right)=133.33 \mathrm{~g} \mathrm{~mol}^{-1}$ $m=n M$
$m=0.8539 \mathrm{~mol} \times 133.33 \mathrm{~g} \mathrm{~mol}^{-1}$ $m=113.9 \mathrm{~g}$

Calculate the mass (in g) of 1.379 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

$$
\begin{gathered}
M\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=(6 \times 12.01)+(12 \times 1.01)+(6 \times 16.00) \\
M\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=180.18 \mathrm{~g} \mathrm{~mol}^{-1} \\
\mathrm{~m}=n M
\end{gathered}
$$

$m=1.379 \mathrm{~mol} \times 180.18 \mathrm{~g} \mathrm{~mol}^{-1}$ $m=248.5 \mathrm{~g}$

Calculate the mass (in g) of 1.264 mol of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$

$M\left(\mathrm{Ni}^{\left.\left(\mathrm{NO}_{3}\right)_{2}\right)}=58.69+(2 \times 14.01)+(6 \times 16.00)\right.$ $M\left(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}\right)=182.71 \mathrm{~g} \mathrm{~mol}^{-1}$ $m=n M$
$m=1.264 \mathrm{~mol} \times 182.71 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
m=230.9 \mathrm{~g}
$$

HISJ OTRELL
 Trusortals lor aB Ghemistiy

$$
\begin{aligned}
& \text { Empirical and } \\
& \text { molecular formulas }
\end{aligned}
$$

The molecular formula is the actual number of atoms in a compound.
The empirical formula is the lowest whole number ratio of atoms in a compound.

Molecular formula $\mathrm{C}_{4} \mathrm{H}_{10}$

Empirical formula $\mathrm{C}_{2} \mathrm{H}_{5}$

Compound

Compound	Molecular formula	Empirical formula
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	CH_{3}
Propene	$\mathrm{C}_{3} \mathrm{H}_{6}$	CH_{2}
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$
Phosphorus pentoxide	$\mathbf{P}_{4} \mathrm{O}_{10}$	$\mathbf{P}_{2} \mathrm{O}_{5}$
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	HO
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{C}_{2} \mathbf{H}_{6} \mathrm{O}$

mass of empirical formula: $12.01+(2 \times 1.01)+16.00=30.03$

$$
\begin{gathered}
\frac{180.18}{30.03}=6 \\
\mathrm{CH}_{2} \mathrm{O} \times 6=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
\end{gathered}
$$

HISJ OTRELL
 Trutortals lor aB chemisuy

$$
\begin{gathered}
\text { Percentage composition } \\
\text { by mass }
\end{gathered}
$$

The percentage composition by mass is the percent by mass of an element in a compound.
$\%$ composition of $X=\frac{\text { mol of } X \text { in compound } \times \text { molar mass of } X}{\text { molar mass of compound }} \times 100$

1. Calculate the molar mass of the compound.
2. Multiply the mol of the element in the compound by its molar mass.
3. Use the above equation to calculate the percent composition.

Determine the percentage composition by mass of carbon in ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$.
$\mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}=46.08 \mathrm{~g} \mathrm{~mol}^{-1}$
2 mol of C in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: 2 \times 12.01 \mathrm{~g} \mathrm{~mol}^{-1}=24.02 \mathrm{~g} \mathrm{~mol}^{-1}$
$\%$ composition of $\mathrm{C}=\frac{24.02 \mathrm{~g} \mathrm{~mol}^{-1}}{46.08 \mathrm{~g} \mathrm{~mol}^{-1}} \times 100$
\% composition of $\mathbf{C}=52.13 \%$

Determine the percentage composition by mass of oxygen in propanoic acid ($\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$).
$M \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}=74.09 \mathrm{~g} \mathrm{~mol}^{-1}$
$2 \mathrm{~mol}^{2} \mathrm{O}$ in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}: 2 \times 16.00 \mathrm{~g} \mathrm{~mol}^{-1}=32.00 \mathrm{~g} \mathrm{~mol}^{-1}$
$\%$ composition of $0=\frac{32.00 \mathrm{~g} \mathrm{~mol}^{-1}}{74.09 \mathrm{~g} \mathrm{~mol}^{-1}} \times 100$
$\%$ composition of $\mathbf{0}=\mathbf{4 8 . 6 3} \%$

Determine the percentage composition by mass of sodium in sodium chloride (NaCl).
M NaCl $=58.44 \mathrm{~g} \mathrm{~mol}^{-1}$
1 mol of Na in $\mathrm{NaCl}: 1 \times 22.99 \mathrm{~g} \mathrm{~mol}^{-1}=22.99 \mathrm{~g} \mathrm{~mol}^{-1}$
$\%$ composition of $\mathrm{Na}=\frac{22.99 \mathrm{~g} \mathrm{~mol}^{-1}}{58.44 \mathrm{~g} \mathrm{~mol}^{-1}} \times 100$
$\%$ composition of $\mathrm{Na}=\mathbf{3 9 . 3 4} \%$

Determine the percentage composition by mass of magnesium in magnesium carbonate $\left(\mathrm{MgCO}_{3}\right)$.
$M \mathrm{MgCO}_{3}=84.32 \mathrm{~g} \mathrm{~mol}^{-1}$
1 mol of Mg in $\mathrm{MgCO}_{3}: 1 \times 24.31 \mathrm{~g} \mathrm{~mol}^{-1}=24.31 \mathrm{~g} \mathrm{~mol}^{-1}$
$\%$ composition of $\mathrm{Mg}=\frac{24.31 \mathrm{~g} \mathrm{~mol}^{-1}}{84.32 \mathrm{~g} \mathrm{mo}^{-1}}$
\% composition of $\mathbf{M g}=$

$$
\frac{100}{84.32 \mathrm{~g} \mathrm{~mol}^{-1}} \times 100
$$

\% composition of $\mathbf{M g}=\mathbf{2 8 . 8 3} \%$

HISJ OTRELL
 Trusortals lor aB Ghemistiy

Calculate empirical formula
from percent composition

An organic compound contains 62.0\% carbon, 13.9\% hydrogen and 24.1% nitrogen by mass. Determine its empirical formula.

$$
\begin{array}{ccc}
\mathrm{C} & \mathrm{H} & \mathrm{~N} \\
\mathbf{6 2 . 0} & \mathbf{1 3 . 9} & \\
\cline { 1 - 2 } 12.01 & \mathbf{2 4 . 0} 1 \\
\hline 5.16 & 13.8 & 1.72
\end{array}
$$

$$
\begin{array}{ccc}
\mathrm{C} & \mathrm{H} & \mathrm{~N} \\
\frac{5.16}{1.72} & \frac{13.8}{1.72} & \frac{1.72}{1.72} \\
3 & 8 & 1 \\
& \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N} &
\end{array}
$$ Determine its molecular formula.

mass of empirical formula: $(3 \times 12.01)+(8 \times 1.01)+14.01=58.12$

$$
\frac{116.24}{58.12}=2
$$

$$
\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N} \times 2=\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}
$$

An organic compound contains 49.20% carbon, 6.95% hydrogen and 43.85\% oxygen by mass. Determine its empirical formula.

$$
\begin{array}{ccc}
C & H & 0 \\
\frac{49.20}{} & \mathbf{6 . 9 5} & \mathbf{4 3 . 8 5} \\
\hline \mathbf{1 2 . 0 1} & \mathbf{1 . 0 1} & \mathbf{1 6 . 0 0} \\
4.10 & 6.88 & 2.74
\end{array}
$$

\[

\] Determine its molecular formula.

mass of empirical formula: $(3 \times 12.01)+(5 \times 1.01)+(2 \times 16.00)=73.08$

$$
\frac{146.16}{73.08}=2
$$

$$
\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \times 2=\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}
$$

HISJCTRELIL
 Trutortals lor aB chemisuy

$$
\begin{gathered}
\text { Concentration of } \\
\text { solutions }
\end{gathered}
$$ How to calculate the amount (in mol) of a substance from its volume (\boldsymbol{V}) and concentration (c).

$\operatorname{amount}(\mathrm{mol})=$ concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$

$$
\begin{gathered}
n(\operatorname{mol})=c\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \times V\left(\mathrm{dm}^{3}\right) \\
n=c V
\end{gathered}
$$

$$
1 \mathrm{~cm}^{3} \times \frac{1 \mathrm{dm}^{3}}{1000 \mathrm{~cm}^{3}}=0.001 \mathrm{dm}^{3}
$$

concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=\frac{\text { amount }(\mathrm{mol})}{\operatorname{volume}\left(\mathrm{dm}^{3}\right)}$

$$
c=\frac{\boldsymbol{n}}{\boldsymbol{V}}
$$

volume $\left(\mathbf{d m}^{3}\right)=\frac{\text { amount }(\mathbf{m o l})}{\text { concentration }\left(\mathbf{m o l ~ d m}^{-3}\right)}$

$$
V=\frac{\boldsymbol{n}}{\boldsymbol{c}}
$$

$$
100.0 \mathrm{~cm}^{3} \times \frac{1 \mathrm{dm}^{3}}{1000 \mathrm{~cm}^{3}}=0.100 \mathrm{dm}^{3}
$$

$$
n(\mathrm{HCl})=0.500 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.100 \mathrm{dm}^{3}
$$

$$
n(\mathrm{HCl})=0.0500 \mathrm{~mol}
$$

Calculate the amount (in mol) of NaOH in $50.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}_{(\mathrm{aq})}$

$50.0 \mathrm{~cm}^{3} \times \frac{1 \mathrm{dm}^{3}}{1000 \mathrm{~cm}^{3}}=0.0500 \mathrm{dm}^{3}$

 $n(\mathrm{NaOH})=2.00 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.0500 \mathrm{dm}^{3}$ $n(\mathbf{N a O H})=0.100 \mathrm{~mol}$
$60.0 \mathrm{~cm}^{3} \times \frac{1 \mathrm{dm}^{3}}{1000 \mathrm{~cm}^{3}}=0.0600 \mathrm{dm}^{3}$

 $n(\mathrm{NaCl})=0.850 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.0600 \mathrm{dm}^{3}$ $n(\mathrm{NaCl})=0.0510 \mathrm{~mol}$Concentration can be measured in $\mathrm{g} \mathrm{dm}^{-3}, \mathrm{~mol} \mathrm{dm}^{-3}$, or ppm.
$c\left(\mathrm{~g} \mathrm{dm}^{-3}\right)=\frac{\text { mass of solute }(\mathrm{g})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)}$
$c\left(\mathbf{m o l ~ d m}{ }^{-3}\right)=\frac{\text { amount of solute }(\mathrm{mol})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)}$

$$
\mathrm{ppm}=\frac{\text { mass of solute }(\mathrm{g})}{\text { mass of solution }(\mathrm{g})} \times 10^{6}
$$ of NaCl . Calculate its concentration in $\mathrm{g} \mathrm{dm}^{-3}$.

$$
\begin{aligned}
& c\left(\mathrm{~g} \mathrm{dm}^{-3}\right)=\frac{\text { mass of solute }(\mathrm{g})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)} \\
& c=\frac{12.50 \mathrm{~g}}{0.5000 \mathrm{dm}^{3}}=25.00 \mathrm{~g} \mathrm{dm}^{-3}
\end{aligned}
$$

Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}^{-3}$

$$
\begin{aligned}
& c\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)=\frac{\text { amount of solute }(\mathrm{mol})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)} \\
& n=\frac{m}{M}=\frac{12.50 \mathrm{~g}}{58.44 \mathrm{~g} \mathrm{~mol}^{-1}}=0.2139 \mathrm{~mol} \\
& \boldsymbol{c}=\frac{0.2139 \mathrm{~mol}^{2}}{0.5000 \mathrm{dm}^{3}}=0.4278 \mathrm{~mol} \mathrm{dm}
\end{aligned}
$$

A 300.0 g water sample contains $1.514 \times 10^{-3} \mathrm{~g}$ of dissolved oxygen. Calculate the concentration in ppm.

mass of solute (g)
 $\mathrm{ppm}=\frac{\text { mass of solution }(\mathrm{g})}{\text { man }} \times 10^{6}$ mass of solution (g)

$$
c=\frac{1.514 \times 10^{-3} \mathrm{~g}}{300.0 \mathrm{~g}} \times 10^{6}
$$

$c=5.047 \mathrm{ppm}\left(\right.$ or $\left.5.047 \mathrm{mg} \mathrm{dm}^{-3}\right)$

HJSJ Oheria
 Triontals tor aB ehemisty

Avogadro's law

Avogadro's law - the volume occupied by a gas is directly proportional to the amount (in mol) of gas (at constant P and T).

$$
V \propto n \quad \frac{V}{n}=k \quad \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
$$

$$
\frac{V_{1}}{m}=\frac{V_{2}}{m}
$$

At the same temperature and pressure equal volumes of any gas contain the same number of particles.

Avogadro's law

Gas	Amount (mol)	Volume at STP $\left(\mathrm{dm}^{3}\right)$	Number of particles
O_{2}	1.00	22.7	6.02×1^{23}
H_{2}	1.00	22.7	6.02×10^{23}
$\mathrm{~N}_{2}$	1.00	22.7	6.02×1^{23}
CO_{2}	1.00	22.7	6.02×10^{23}
CH_{4}	1.00	22.7	6.02×10^{23}

$2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}$

$2 \mathrm{~mol} \mathrm{CO}_{(\mathrm{g})}+1 \mathrm{~mol} \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{~mol} \mathrm{CO}_{2(\mathrm{~g})}$
2 volumes $\mathrm{CO}_{(\mathrm{g})}+1$ volume $\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2$ volumes $\mathrm{CO}_{2(\mathrm{~g})}$ $2 \mathrm{dm}^{3} \mathrm{CO}_{(\mathrm{g})}+1 \mathrm{dm}^{3} \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{dm}^{3} \mathrm{CO}_{2(\mathrm{~g})}$ $10 \mathrm{dm}^{3} \mathrm{CO}_{(\mathrm{g})}+5 \mathrm{dm}^{3} \mathrm{O}_{2(\mathrm{~g})} \rightarrow 10 \mathrm{dm}^{3} \mathrm{CO}_{2(\mathrm{~g})}$
$50.0 \mathrm{dm}^{3}$ of CO is reacted with $25.0 \mathrm{dm}^{3}$ of O_{2} at STP. Determine the volume of CO_{2} produced.

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

2 volumes $\mathrm{CO}_{(\mathrm{g})}+1$ volume $\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2$ volumes $\mathrm{CO}_{2(\mathrm{~g})}$ $50.0 \mathrm{dm}^{3} \mathrm{CO}_{(\mathrm{g})}+25.0 \mathrm{dm}^{3} \mathrm{O}_{2(\mathrm{~g})} \rightarrow 50.0 \mathrm{dm}^{3} \mathrm{CO}_{2(\mathrm{~g})}$

$$
\text { Answer }=50.0 \mathrm{dm}^{3} \text { of } \mathrm{CO}_{2}
$$

$40.0 \mathrm{dm}^{3}$ of CO is reacted with $40.0 \mathrm{dm}^{3}$ of O_{2} at STP. Determine the volume of CO_{2} produced.

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

2 volumes $\mathrm{CO}_{(\mathrm{g})}+1$ volume $\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2$ volumes $\mathrm{CO}_{2(\mathrm{~g})}$ CO: 40/2 = 20 (limiting reactant)
$\mathrm{O}_{2}: 40 / 1=40$ (excess reactant)
$40.0 \mathrm{dm}^{3}$ of CO is reacted with $40.0 \mathrm{dm}^{3}$ of O_{2} at STP. Determine the volume of CO_{2} produced.

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

CO: 40/2 = 20 (limiting reactant) $\mathrm{O}_{2}: 40 / 1=40$ (excess reactant) $40.0 \mathrm{dm}^{3}$ of CO will produce $40.0 \mathrm{dm}^{3}$ of CO_{2}
$20.0 \mathrm{dm}^{3}$ of N_{2} is reacted with $50.0 \mathrm{dm}^{3}$ of H_{2} at STP. Determine the volume of NH_{3} produced and the volume of the excess reactant remaining.

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

$\mathrm{N}_{2}: 20 / 1=20$ (excess reactant) $\mathrm{H}_{2}: 50 / 3=16.7$ (limiting reactant)
$20.0 \mathrm{dm}^{3}$ of N_{2} is reacted with $50.0 \mathrm{dm}^{3}$ of H_{2} at STP. Determine the volume of NH_{3} produced and the volume of the excess reactant remaining.

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

$50.0 \mathrm{dm}^{3}$ of H_{2} will produce $33.3 \mathrm{dm}^{3} \mathrm{NH}_{3}$ Volume of N_{2} remaining:
$20.0 \mathrm{dm}^{3}-16.7 \mathrm{dm}^{3}=3.3 \mathrm{dm}^{3}$

