Structure 1,4

- How many carbon atoms are there in 1.00 mol of ethanol, C_2H_5OH ?
- How many hydrogen atoms are there in 2.00 mol
- of methane, CH₄?

or IB Chemistry

Tutorials

- How many Na⁺ ions are there in 1.00 mol of NaCl?
- What is the total number of ions in 0.50 mol of (NH_)_CO_?
- $(NH_4)_2 CO_3?$

Tutorials for IB Chemistry

- The mole, symbol mol, is the SI unit for amount of substance (n).
- One mole contains exactly $6.02214076 \times 10^{23}$ elementary entities.

6.02×10^{23}

The Avogadro constant, L or N_{Δ} is: $6.02 \times 10^{23} \text{ mol}^{-1}$

Tutorials for IB Chemistry The mole concept

Elementary entity	Number of elementary entities in one mole
Atoms	6.02 × 10 ²³
Molecules	6.02 × 10 ²³
lons	6.02 × 10 ²³
Formula units	6.02 × 10 ²³

Determine the number of chlorine molecules and chlorine atoms in 1.00 mol of chlorine gas, Cl_2 .

Cl ₂ molecules	6.02 × 10 ²³
Cl atoms	$2 \times 6.02 \times 10^{23} = 1.20 \times 10^{24}$

Determine the number of hydrogen atoms and oxygen atoms in 0.500 mol of water, H_2O .

$0.500 \times 6.02 \times 10^{23} \times$

H atoms	$2 \times 0.500 \times 6.02 \times 10^{23} = 6.02 \times 10^{23}$
O atoms	$0.500 \times 6.02 \times 10^{23} = 3.01 \times 10^{23}$

Determine the number of carbon atoms, hydrogen atoms and oxygen atoms in 0.250 mol of ethanol, C_2H_5OH .

$0.250 \times 6.02 \times 10^{23} \times$

C atoms	$2 \times 0.250 \times 6.02 \times 10^{23} = 3.01 \times 10^{23}$
H atoms	$6 \times 0.250 \times 6.02 \times 10^{23} = 9.03 \times 10^{23}$
O atoms	$0.250 \times 6.02 \times 10^{23} = 1.51 \times 10^{23}$

The mole concept In one mole of sodium chloride (NaCl) there are 6.02×10^{23} NaCl formula units.

NaCl is an ionic compound therefore it does not form molecules.

Tutorials for IB Chemistry

One mole of NaCl has 6.02×10^{23} sodium ions and 6.02×10^{23} chloride ions (total number of ions = 1.20×10^{24}).

Determine the number of magnesium ions and chloride ions in 1.00 mol of magnesium chloride, MgCl₂.

$6.02 \times 10^{23} \times MgCl_2$

Mg ²⁺ ions	6.02 × 10 ²³
Cl ⁻ ions	$2 \times 6.02 \times 10^{23} = 1.20 \times 10^{24}$

Determine the number of protons, neutrons and electrons in 0.750 mol of carbon-12 atoms.

$0.750 \times 6.02 \times 10^{23} \times \frac{12}{6}$

Protons	$0.750 \times 6 \times 6.02 \times 10^{23} = 2.71 \times 10^{24}$
Electrons	$0.750 \times 6 \times 6.02 \times 10^{23} = 2.71 \times 10^{24}$
Neutrons	$0.750 \times 6 \times 6.02 \times 10^{23} = 2.71 \times 10^{24}$

The mole concept

How many carbon atoms are there in 1.00 mol of ethanol, C_2H_5OH ? **1.20** × **10**²⁴ C atoms How many hydrogen atoms are there in 2.00 mol of methane, CH_{4} ? **4.82** × **10**²⁴ H atoms How many Na⁺ ions are there in 1.00 mol of NaCl? 6.02 × 10²³ Na⁺ ions

for IB Chemistry

Tutorials

What is the total number of ions in 0.50 mol of $(NH_4)_2CO_3$? 9.03 × 10²³ ions

The mole concept part 2

- What is the mass of one molecule of ethane, C_2H_6 ?
- How many H_2O molecules are there in 50.0 g of H_2O ?
- What is the mass of 1.81×10^{24} molecules of ethanol, C₂H₅OH?
- How many formula units are there in 25.0 g of NaCl?

- What is the mass of one molecule of ethane, C_2H_6 ?
- How many H_2O molecules are there in 50.0 g of H_2O ?
- What is the mass of 1.81×10^{24} molecules of ethanol, C₂H₅OH?
- How many formula units are there in 25.0 g of NaCl?

The mole concept

How many carbon atoms are there in 1.00 mol of ethanol, C_2H_5OH ? **1.20** × **10**²⁴ C atoms How many hydrogen atoms are there in 2.00 mol of methane, CH_{4} ? **4.82** × **10**²⁴ H atoms How many Na⁺ ions are there in 1.00 mol of NaCl? 6.02 × 10²³ Na⁺ ions

for IB Chemistry

Tutorials

What is the total number of ions in 0.50 mol of $(NH_4)_2CO_3$? 9.03 × 10²³ ions

Relative atomic mass and formula mass

Relative atomic mass, A_r , is the weighted average mass of the naturally occurring isotopes of an element relative to 1/12 the mass of an atom of carbon-12.

Chemistry

Tutor

12

The relative atomic mass scale is based on the isotope carbon-12 which has a mass of exactly 12 amu.

Relative atomic mass (A,

Atomic number	1	12	17	26
Element	Н	Mg	Cl	Fe
Relative atomic mass	1.01	24.31	35.45	55.85

Element	Relative atomic mass	Mass compared to ¹² C
Hydrogen	1.01	≈ 12 times lighter
Helium	4.00	≈ 3 times lighter
Magnesium	24.31	≈ 2 times heavier
Phosphorus	30.07	≈ 2.5 times heavier
Chlorine	35.45	≈ 3 times heavier

Relative atomic mass (A_r)

Isotope	Percent abundance (%)
²⁴ Mg	78.99
²⁵ Mg	10.00
²⁶ Mg	11.01

 $A_r = \frac{(24 \times 78.99) + (25 \times 10.00) + (26 \times 11.01)}{100}$ $A_r = 24.32$

Relative formula mass, M_r , is the weighted average mass of a substance relative to 1/12 the mass of an atom of ¹²C. The M_r is the sum of the A_r of the atoms in the substance.

Substance	Atoms	Relative formula mass
H ₂	2 × H (1.01)	2.02
H ₂ O	2 × H (1.01) 1 × O (16.00)	18.02
C ₂ H ₆	2 × C (12.01) 6 × H (1.01)	30.08

Relative formula mass, M_r , is the weighted average mass of a substance relative to 1/12 the mass of an atom of carbon-12. It is the sum of the A_r of the atoms in the substance.

Relative formula mass (Mr)

Tutorials for IB Chemistry

 $H_2 M_r = 2.02$

 $H_2OM_r = 18.02$

 $C_2H_6M_r = 30.08$

Relative formula mass is also used for substances that do not form molecules, such as ionic compounds.

Tutorials for IB Chemistry

Relative formula mass (Mr)

The relative formula mass of sodium chloride, NaCl, is 58.44

MSJChem Tườnas for IB Chemistry

Molar mass

- Molar mass (*M*) is the mass in grams of one mole of a substance (g mol⁻¹).
- One mole of substance contains 6.02 × 10²³ particles. The molar mass of a substance is numerically equal to its relative atomic mass.

Atomic number	6	12	16	26
Element	С	Mg	S	Fe
Relative atomic mass	12.01	24.31	32.07	55.85

Molar mass

To convert A_r to M, multiply by the molar mass constant, M_u , which is approximately equal to 1 g mol⁻¹

Element	Relative atomic mass	Molar mass (g mol ⁻¹)
C	12.01	12.01
Mg	24.31	24.31
S	32.07	32.07
Fe	55.85	55.85

Molar mass

Determine the molar mass of ethanol, C_2H_5OH .

- 2 carbon atoms $A_r = 12.01$
- 1 oxygen atom $A_r = 16.00$
- 6 hydrogen atoms A_r = 1.01

- *M*_r = (2 × 12.01) + 16.00 + (6 × 1.01) = 46.08
- *M* = 46.08 × *M*_u (≈ 1 g mol⁻¹)
- $M = 46.08 \text{ g mol}^{-1}$

Molar mass

Substance	Relative molecular mass/formula mass	Molar mass M (g mol ⁻¹)
02	32.00	32.00
H ₂ O	18.02	18.02
CH ₄	16.05	16.05
NaCl	58.44	58.44
$(NH_4)_2CO_3$	96.11	96.11
Al ₂ O ₃	101.96	101.96

MSJChem Tườnas for IB Chemistry

Calculating amount of substance

Calculating amount of substance How to calculate the amount (in mol) of a substance from its mass (*m*) and molar mass (*M*).

amount of substance (mol) =
$$\frac{\max(g)}{\max(g)}$$

$$n(\mathrm{mol}) = rac{m(\mathrm{g})}{M(\mathrm{g}\,\mathrm{mol}^{-1})}$$
 $n = rac{m}{M}$

Calculating amount of substance Tutorials for IB Chemistry

$mass(g) = amount(mol) \times molar mass(g mol^{-1})$ m = nM

Calculating amount of substance Calculating amount of substance Calculate the amount (in mol) of O_2 in a 16.00 g sample of O_2 .

$M(O_2) = 16.00 \times 2 = 32.00 \text{ g mol}^{-1}$ $n(O_2) = \frac{16.00 \text{ g}}{32.00 \text{ g mol}^{-1}}$

 $n(0_2) = 0.5000$ mol

MSJChem Calculating amount of substance Calculate the amount (in mol) of H_2O in a 100.0 g sample of H_2O .

$$M(H_20) = 16.00 + (2 \times 1.01) = 18.02 \text{ g mol}^{-1}$$
$$n(H_20) = \frac{100.0 \text{ g}}{18.02 \text{ g mol}^{-1}}$$
$$n(H_20) = 5.549 \text{ mol}$$

 $M(\text{NaCl}) = 22.99 + 35.45 = 58.44 \text{ g mol}^{-1}$ 50.00 g $n(\text{NaCl}) = \frac{1}{58.44 \text{ g mol}^{-1}}$ n(NaCl) = 0.8556 mol

Calculating amount of substance Calculate the amount (in mol) of Ni(NO₃)₂ in a 75.23 g sample of Ni(NO₃)₂.

 $M(Ni(NO_3)_2) = 58.69 + (2 \times 14.01) + (6 \times 16.00) = 182.71 \text{ g mol}^{-1}$

$$n(Ni(NO_3)_2) = \frac{75.23 \text{ g}}{182.71 \text{ g mol}^{-1}}$$

$n(Ni(NO_3)_2) = 0.4117 mol$
MSJChem Tutorials for IB Chemistry

Calculating mass (g) from amount (in mol)

MSJChem Tutorials for IB Chemistry Calculating Mass from amount

$$n(\text{mol}) = rac{m(g)}{M(g \text{ mol}^{-1})}$$
 $n = rac{m}{M}$

mass (g) = amount (mol) × molar mass (g mol⁻¹) m = nM

EXAMPLE 18 Chemistry Calculating mass from amount Calculate the mass (in g) of 0.6437 mol of $CaCO_3$.

$M(CaCO_3) = 40.08 + 12.01 + (3 \times 16.00)$ $M(CaCO_3) = 100.09 \text{ g mol}^{-1}$ m = nM $m = 0.6437 \text{ mol} \times 100.09 \text{ g mol}^{-1}$ m = 64.43 g

MSJChem Tutorials for IB Chemistry Calculating mass from amount Calculate the mass (in g) of 0.8539 mol of $AlCl_3$

$M(AlCl_3) = 26.98 + (3 \times 35.45)$ $M(AlCl_3) = 133.33 \text{ g mol}^{-1}$ m = nM $m = 0.8539 \text{ mol} \times 133.33 \text{ g mol}^{-1}$ $m = 113.9 \,\mathrm{g}$

EXAMPLE 1B Chemistry Calculating mass from amount Calculate the mass (in g) of 1.379 mol of $C_6H_{12}O_6$

$M(C_6H_{12}O_6) = (6 \times 12.01) + (12 \times 1.01) + (6 \times 16.00)$ $M(C_6H_{12}O_6) = 180.18 \text{ g mol}^{-1}$ m = nM $m = 1.379 \text{ mol} \times 180.18 \text{ g mol}^{-1}$ $m = 248.5 \,\mathrm{g}$

EXAMPLE 18 Chemistry Calculating mass from amount Calculate the mass (in g) of 1.264 mol of $Ni(NO_3)_2$

$M(Ni(NO_3)_2) = 58.69 + (2 \times 14.01) + (6 \times 16.00)$ $M(Ni(NO_3)_2) = 182.71 \text{ g mol}^{-1}$ m = nM

$m = 1.264 \text{ mol} \times 182.71 \text{ g mol}^{-1}$ m = 230.9 g

MSJChem Tutorials for IB Chemistry

Empirical and molecular formulas Tutorials for IB Chemistry Empirical and molecular formulas The molecular formula is the actual number of atoms in a compound.

The empirical formula is the lowest whole number ratio of atoms in a compound.

Johem

Molecular formula C₄H₁₀ **Empirical formula C₂H₅**

Tutorials for IB Chemistry Empirical and molecular formulas

Compound	Molecular formula	Empirical formula
Ethane	C ₂ H ₆	CH ₃
Propene	C ₃ H ₆	CH ₂
Glucose	$C_{6}H_{12}O_{6}$	CH ₂ O
Phosphorus pentoxide	P_4O_{10}	P_2O_5
Hydrogen peroxide	H ₂ O ₂	НО
Ethanol	C ₂ H ₆ O	C ₂ H ₆ O

The molecular formula of a compound can be determined from its empirical formular and M_r (or molar mass, M). A compound has the empirical formula CH_2O and a M_r of 180.18. Determine its molecular formula.

mass of empirical formula: $12.01 + (2 \times 1.01) + 16.00 = 30.03$

$$\frac{180.18}{30.03} = 6$$

CH₂O × 6 = C₆H₁₂O₆

MSJChem Tutorials for IB Chemistry

Percentage composition by mass

The percentage composition by mass is the percent by mass of an element in a compound.

% composition of $X = \frac{\text{mol of } X \text{ in compound} \times \text{molar mass of } X}{\text{molar mass of compound}} \times 100$

Percentage composition by mass

1. Calculate the molar mass of the compound.

or IB Chemistry

Tutorials

- 2. Multiply the mol of the element in the compound by its molar mass.
- 3. Use the above equation to calculate the percent composition.

Determine the percentage composition by mass of carbon in ethanol (CH₃CH₂OH).

Tutorials for IB Chemistry

 $M \text{ CH}_3\text{CH}_2\text{OH} = 46.08 \text{ g mol}^{-1}$ 2 mol of C in CH₃CH₂OH: 2 × 12.01 g mol⁻¹ = 24.02 g mol⁻¹

Percentage composition by mass

% composition of C = $\frac{24.02 \text{ g mol}^{-1}}{46.08 \text{ g mol}^{-1}} \times 100$

% composition of C = 52.13 %

Determine the percentage composition by mass of oxygen in propanoic acid (CH_3CH_2COOH).

Tutorials for IB Chemistry

 $M \text{ CH}_3\text{CH}_2\text{COOH} = 74.09 \text{ g mol}^{-1}$ 2 mol of O in CH₃CH₂COOH: 2 × 16.00 g mol⁻¹ = 32.00 g mol⁻¹

Percentage composition by mass

% composition of $O = \frac{32.00 \text{ g mol}^{-1}}{74.09 \text{ g mol}^{-1}} \times 100$

% composition of 0=48.63~%

- Determine the percentage composition by mass of sodium in sodium chloride (NaCl).
- M NaCl = 58.44 g mol⁻¹
- 1 mol of Na in NaCl: 1×22.99 g mol⁻¹ = 22.99 g mol⁻¹
 - % composition of Na = $\frac{22.99 \text{ g mol}^{-1}}{58.44 \text{ g mol}^{-1}} \times 100$

% composition of Na = 39.34 %

Determine the percentage composition by mass of magnesium in magnesium carbonate (MgCO₃).

Percentage composition by mass

Tutorials for IB Chemistry

 $M \text{ MgCO}_{3} = 84.32 \text{ g mol}^{-1}$ 1 mol of Mg in MgCO₃: 1 × 24.31 g mol⁻¹ = 24.31 g mol⁻¹ % composition of Mg = $\frac{24.31 \text{ g mol}^{-1}}{84.32 \text{ g mol}^{-1}} \times 100$

% composition of Mg = 28.83 %

MSJChem Tutorials for IB Chemistry

Calculate empirical formula from percent composition An organic compound contains 62.0% carbon, 13.9% hydrogen and 24.1% nitrogen by mass. Determine its empirical formula.

Η Ν 13.9 24.1 **62.0** 14.01 1.01 12.01 5.16 13.8 1.72

Calculating empirical formula

Η Ν 5.16 13.8 1.72 1.72 1.72 1.72 3 8 1 C_3H_8N

The molar mass of the compound is 116.24 g mol⁻¹. Determine its molecular formula.

mass of empirical formula: $(3 \times 12.01) + (8 \times 1.01) + 14.01 = 58.12$

$$\frac{116.24}{58.12} = 2$$

$C_3H_8N \times 2 = C_6H_{16}N_2$

An organic compound contains 49.20% carbon, 6.95% hydrogen and 43.85% oxygen by mass. Determine its empirical formula.

> Η 6.95 43.85 49.20 12.01 16.00 1.01 4.10 6.88 2.74

Calculating empirical formula

Η ()4.10 2.74 6.88 2.74 2.74 2.74 2.51 1.50 $C_{3}H_{5}O_{2}$

The molar mass of the compound is 146.16 g mol⁻¹. Determine its molecular formula.

mass of empirical formula: $(3 \times 12.01) + (5 \times 1.01) + (2 \times 16.00) = 73.08$

$$\frac{146.16}{73.08} = 2$$

$C_3H_5O_2 \times 2 = C_6H_{10}O_4$

MSJChem Tutorials for IB Chemistry

Concentration of solutions

Calculating amount of substance How to calculate the amount (in mol) of a substance from its volume (*V*) and concentration (*c*).

amount (mol) = concentration (mol dm^{-3}) × volume (dm^{3})

$$n(\text{mol}) = c (\text{mol } \text{dm}^{-3}) \times V (\text{dm}^3)$$
$$n = cV$$
$$1 \text{ cm}^3 \times \frac{1 \text{ dm}^3}{1000 \text{ cm}^3} = 0.001 \text{ dm}^3$$

Calculating amount of substance Tutorials for IB Chemistry concentration (mol dm⁻³) = $\frac{\text{amount (mol)}}{\text{volume (dm^3)}}$ n $c = \frac{1}{V}$ amount (mol) concentration (mol dm⁻³) volume $(dm^3) = -$

Calculating amount of substance Calculate the amount (in mol) of HCl in 100.0 cm³ of 0.500 mol dm⁻³ HCl_(aq)

$100.0 \text{ cm}^3 \times \frac{1 \text{ dm}^3}{1000 \text{ cm}^3} = 0.100 \text{ dm}^3$

$n(\text{HCl}) = 0.500 \text{ mol } \text{dm}^{-3} \times 0.100 \text{ dm}^{3}$

n(HCl) = 0.0500 mol

Calculating amount of substance Calculate the amount (in mol) of NaOH in 50.0 cm³ of 2.00 mol dm⁻³ NaOH_(aq)

$$50.0 \text{ cm}^3 \times \frac{1 \text{ dm}^3}{1000 \text{ cm}^3} = 0.0500 \text{ dm}^3$$

$n(\text{NaOH}) = 2.00 \text{ mol } \text{dm}^{-3} \times 0.0500 \text{ dm}^{3}$

n(NaOH) = 0.100 mol

Calculating amount of substance Calculate the amount (in mol) of NaCl in 60.0 cm³ of 0.850 mol dm⁻³ NaCl_{(aq).}

$$60.0 \text{ cm}^3 \times \frac{1 \text{ dm}^3}{1000 \text{ cm}^3} = 0.0600 \text{ dm}^3$$

$n(\text{NaCl}) = 0.850 \text{ mol } \text{dm}^{-3} \times 0.0600 \text{ dm}^{3}$

n(NaCl) = 0.0510 mol

Concentration of solutions Concentration can be measured in g dm⁻³, mol dm⁻³, or ppm.

 $c (g dm^{-3}) = \frac{mass of solute (g)}{volume of solution (dm^3)}$ $c \pmod{dm^{-3}} = \frac{amount of solute (mol)}{volume of solution (dm^3)}$ $ppm = \frac{mass of solute (g)}{mass of solution (g)} \times 10^{6}$

A solution with a volume of 500.0 cm³ contains 12.50 g of NaCl. Calculate its concentration in g dm⁻³.

$$c (g dm^{-3}) = \frac{mass of solute (g)}{volume of solution (dm^3)}$$

 $c = \frac{12.50 g}{0.5000 dm^3} = 25.00 g dm^{-3}$

$$c \;(\text{mol dm}^{-3}) = \frac{\text{amount of solute (mol)}}{\text{volume of solution (dm}^3)}$$
$$n = \frac{m}{M} = \frac{12.50 \text{ g}}{58.44 \text{ g mol}^{-1}} = 0.2139 \text{ mol}$$
$$c = \frac{0.2139 \text{ mol}}{0.5000 \text{ dm}^3} = 0.4278 \text{ mol dm}^{-3}$$

A 300.0 g water sample contains 1.514 × 10⁻³ g of dissolved oxygen. Calculate the concentration in ppm.

 $ppm = \frac{mass of solute (g)}{mass of solution (g)} \times 10^{6}$ $c = \frac{1.514 \times 10^{-3} \text{ g}}{300.0 \text{ g}} \times 10^{6}$ $c = 5.047 \text{ ppm} (\text{or } 5.047 \text{ mg dm}^{-3})$

MSJChem Tworlals for IB Chemistry

Avogadro's law

Avogadro's law - the volume occupied by a gas is directly proportional to the amount (in mol) of gas (at constant *P* and *T*).

Avogadro's law

$$V \propto n \qquad \frac{V}{n} = k \qquad \frac{V_1}{n_1} = \frac{V_2}{n_2}$$

At the same temperature and pressure equal volumes of any gas contain the same number of particles.

MSJChem Tutorials for IB Chemistry

Gas	Amount (mol)	Volume at STP (dm ³)	Number of particles
02	1.00	22.7	6.02 × 10 ²³
H ₂	1.00	22.7	6.02 × 10 ²³
N ₂	1.00	22.7	6.02 × 10 ²³
CO ₂	1.00	22.7	6.02 × 10 ²³
CH ₄	1.00	22.7	6.02 × 10 ²³

 $2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$ 2 mol CO_(g) + 1 mol O_{2(g)} \rightarrow 2 mol CO_{2(g)} 2 volumes $CO_{(g)}$ + 1 volume $O_{2(g)} \rightarrow$ 2 volumes $CO_{2(g)}$ $2 \text{ dm}^3 \text{CO}_{(g)} + 1 \text{ dm}^3 \text{O}_{2(g)} \rightarrow 2 \text{ dm}^3 \text{CO}_{2(g)}$ 10 dm³ CO_(g) + 5 dm³ O_{2(g)} \rightarrow 10 dm³ CO_{2(g)}

Avogadro's law

- 50.0 dm³ of CO is reacted with 25.0 dm³ of O₂ at STP. Determine the volume of CO₂ produced.
- $2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$ 2 volumes $CO_{(g)}$ + 1 volume $O_{2(g)} \rightarrow$ 2 volumes $CO_{2(g)}$ 50.0 dm³ CO_(g) + 25.0 dm³ O_{2(g)} \rightarrow 50.0 dm³ CO_{2(g)} Answer = $50.0 \text{ dm}^3 \text{ of } \text{CO}_2$

Avogadro's law

40.0 dm³ of CO is reacted with 40.0 dm³ of O₂ at STP. Determine the volume of CO₂ produced.

$$2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$$
2 volumes $CO_{(g)} + 1$ volume $O_{2(g)} \rightarrow 2$ volumes $CO_{2(g)}$
CO: 40/2 = 20 (limiting reactant)
 $O_2: 40/1 = 40$ (excess reactant)

Avogadro's law

40.0 dm³ of CO is reacted with 40.0 dm³ of O₂ at STP. Determine the volume of CO₂ produced.

$$\mathbf{2CO}_{(g)} + \mathbf{O}_{2(g)} \rightarrow \mathbf{2CO}_{2(g)}$$

- CO: 40/2 = 20 (limiting reactant)
- O₂: 40/1 = 40 (excess reactant)
- 40.0 dm³ of CO will produce 40.0 dm³ of CO₂

20.0 dm³ of N₂ is reacted with 50.0 dm³ of H₂ at STP. Determine the volume of NH_3 produced and the volume of the excess reactant remaining .

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

 N_2 : 20/1 = 20 (excess reactant) H_2 : 50/3 = 16.7 (limiting reactant)

20.0 dm³ of N₂ is reacted with 50.0 dm³ of H₂ at STP. Determine the volume of NH_3 produced and the volume of the excess reactant remaining .

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

50.0 dm³ of H₂ will produce 33.3 dm³ NH₃ Volume of N₂ remaining: 20.0 dm³ – 16.7 dm³ = 3.3 dm³