HISJCTRELIL
 Triontals tor aB ehemisty

$$
\text { Structure } 1.5
$$

\mathbf{M}^{25}	${ }^{16}$	J	${ }^{6}$	$\stackrel{2}{\mathrm{He}}$	\mathbf{M}^{25}
	${ }_{\substack{\text { Sutur } \\ 32065}}$		${ }_{\substack{\text { Capaon } \\ \text { ki2007 }}}$	${ }_{\text {Hex }}^{\text {Helium }}$	

Ideal gases

An ideal gas is a hypothetical gas that obeys the gas laws and the kinetic-molecular theory.

- Particles of an ideal gas are in constant, random, straight-line motion.
- Collisions between particles of an ideal gas are elastic; total kinetic energy is conserved.
- The volume occupied by the particles of an ideal gas is negligible relative to the volume of the container.
- There are no intermolecular forces acting between particles of an ideal gas.
- The average kinetic energy of the particles of an ideal gas is directly proportional to the absolute temperature in kelvin.

A real gas is a gas that deviates from ideal gas behaviour.

- Real gases have a finite, measurable volume.
- Real gases have intermolecular forces that act between the particles.
Real gases exhibit nearly ideal behaviour at relatively high temperatures and low pressures. They deviate the most from ideal behaviour at low temperatures and high pressures.

For one mole of an ideal gas, the product of PV/RT is equal to one (regardless of the temperature or pressure).

$$
n=\frac{1.00 \times 10^{5} \mathrm{~Pa} \times 0.0227 \mathrm{~m}^{3}}{8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 273 \mathrm{~K}}=1.00 \mathrm{~mol}
$$

Real gases exhibit nearly ideal behaviour at relatively high temperatures and low pressures.
Real gases deviate the most from ideal gas behavior at high pressures and low temperatures.

For one mole of an ideal gas, the product of PV/RT is always equal to one.

$$
n=\frac{P V}{R T}
$$

$1.00 \times 10^{5} \mathrm{~Pa} \times 0.0227 \mathrm{~m}^{3}$
$n=\frac{1.00 \times 1 \mathrm{~mol}}{8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 273 \mathrm{~K}}=1.00 \mathrm{~m}$
For real gases the product of PV/RT $\neq 1$.

Deviation of nitrogen gas from ideal gas behavior.

 At moderately high pressures, the values of PV/RT are less than one, mainly because of the effects of intermolecular forces.

Lower $P_{\text {ext }}$; particles are too far apart for intermolecular forces to act

Moderately high $P_{\text {ext }}$; particles are now close enough for intermolecular forces to act

Intermolecular attractions reduce the force of the collisions with the container wall which results in a lower pressure one, mainly because of the effects of molecular volume.

Lower $P_{\text {ext }}$; the volume occupied by the gas particles is negligible compared to the volume of the container

Very high $P_{\text {ext; }}$ the volume occupied by the gas particles becomes significant

Deviation of different gases from ideal gas behaviour.

Ideal gases

Real gases

Ideal gases behave ideally at all temperatures and pressures

Real gases deviate the most from ideal behaviour at low temperatures and high pressures

The volume occupied by an ideal gas is assumed to be negligible Ideal gases have no intermolecular forces acting between the particles

Ideal gases obey the ideal gas law

$$
P V=n R T
$$

Real gases have a finite, measurable volume
Real gases have intermolecular forces acting between their particles
Real gases obey the van der Waals equation

$$
P=\frac{R T}{V-b}-\frac{a}{V^{2}}
$$

HISJ OTRELL
 Trutortals lor aB cheufsuy

Molar volume of a gas by one mole of an ideal gas.

STP : 273 K and $1.00 \times 10^{5} \mathrm{~Pa}$

$$
\begin{aligned}
V & =\frac{1.00 \times 8.31 \times 273}{1.00 \times 10^{5}}=0.0227 \mathrm{~m}^{3} \\
V_{m} & =0.0227 \mathrm{~m}^{3} \mathrm{~mol}^{-1} \text { or } 22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}
\end{aligned}
$$

The molar volume of a gas $\left(V_{m}\right)$ is the volume occupied by one mole of an ideal gas.

STP : 273 K and $1.00 \times 10^{5} \mathrm{~Pa}$

$$
V_{m}\left(\mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)=\frac{0.0227 \mathrm{~m}^{3}}{1 \mathrm{~mol}}
$$

$$
V_{m}=0.0227 \mathrm{~m}^{3} \mathrm{~mol}^{-1} \text { or } 22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}
$$

28.3 cm
$22.7 \mathrm{dm}^{3}$

$22.7 \mathrm{dm}^{3}$

$22.7 \mathrm{dm}^{3}$

$$
\begin{aligned}
V\left(\mathrm{dm}^{3}\right)=n & (\mathrm{~mol}) \times V_{m}\left(22.7 \mathrm{dm}^{3}\right) \\
V & =n \times 22.7 \\
n(\mathrm{~mol}) & =\frac{V\left(\mathrm{dm}^{3}\right)}{V_{m}\left(22.7 \mathrm{dm}^{3}\right)} \\
n & =\frac{V}{22.7}
\end{aligned}
$$

Calculate the volume (in dm^{3}) occupied by 0.250 mol of N_{2} at STP.

$$
\begin{gathered}
V=n \times 22.7 \\
V=0.250 \times 22.7 \\
V=5.68 \mathrm{dm}^{3}
\end{gathered}
$$ of CO_{2} at STP.

$$
\begin{gathered}
V=n \times 22.7 \\
V=0.00619 \times 22.7 \\
V=0.141 \mathrm{dm}^{3} \\
0.141 \mathrm{dm}^{3} \times \frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{dm}^{3}}=141 \mathrm{~cm}^{3}
\end{gathered}
$$

Calculate the amount (in mol) of N_{2} in a $0.742 \mathrm{dm}^{3}$ sample.

$$
\begin{gathered}
n=\frac{V}{22.7} \\
n=\frac{0.742}{22.7}
\end{gathered}
$$

$$
n=0.0327 \mathrm{~mol}
$$

Calculate the amount (in mol) of CH_{4} in a $2.36 \mathrm{~cm}^{3}$ sample.

$1 \mathrm{dm}^{3}$

$2.36 \mathrm{~cm}^{3} \times \frac{1 \mathrm{dm}^{3}}{1000 \mathrm{~cm}^{3}}=2.36 \times 10^{-3} \mathrm{dm}^{3}$
2.36×10^{-3}

$$
n=\frac{22.7}{2.7}
$$

$n=\frac{22.7}{}$

$$
n=1.04 \times 10^{-4} \mathrm{~mol}
$$

Determine the volume of H_{2} (in cm^{3}) produced at STP when 2.00 g of Mg is reacted with excess $\mathrm{HCl}_{(\mathrm{aq})}$ -

$$
\begin{array}{r}
\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq)}} \rightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \\
\boldsymbol{n}(\mathbf{M g})=\frac{2.00}{24.31}=0.0823 \mathrm{~mol}
\end{array}
$$

Ratio of Mg to $\mathrm{H}_{\mathbf{2}}$ is $\mathbf{1 : 1}$
0.0823 mol Mg will produce $0.0823 \mathrm{~mol} \mathrm{H}_{2}$

$n\left(H_{2}\right)=0.0823 \mathrm{~mol}$

$$
V=n \times 22.7
$$

$$
V=0.0823 \times 22.7
$$

$$
V=1.87 \mathrm{dm}^{3}
$$

$1000 \mathrm{~cm}^{3}$

$$
1.87 \mathrm{dm}^{3} \times \frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{dm}^{3}}=1.87 \times 10^{3} \mathrm{~cm}^{3}
$$

HISJ OTRELL
 Trutortals lor aB cheufsuy

$$
\text { The gas laws part } 1
$$

$$
\begin{array}{ll}
P \propto \frac{1}{V} & V \propto T \quad P \propto T \\
V \propto n & \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
\end{array}
$$

Boyle's law - the volume occupied by a gas is inversely proportional to its pressure (at constant n and T).

$$
P \propto \frac{1}{V} \quad P_{1} V_{1}=P_{2} V_{2}
$$

Charles's law - the volume occupied by a gas is directly proportional to its absolute temperature (at constant \boldsymbol{n} and P).

$$
\begin{gathered}
V \propto T \quad \frac{T}{T}=k \\
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
\end{gathered}
$$

Gay Lussac's law - the pressure exerted by a gas is directly proportional to its absolute temperature (at constant n and V).
$P \propto T \quad \frac{P}{T}=k$

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

Avogadro's law - the volume occupied by a gas is directly proportional to the amount (in mol) of gas (at constant P and T).

$$
\begin{gathered}
V \propto n \frac{V}{n}=k \\
\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
\end{gathered}
$$

The Combined gas law combines Boyle's law, Charles's law and Gay-Lussac's law.

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \frac{P_{1} V_{1}}{T_{1}}=k
$$

WIS J OREML
 Trutortals lor aB chemisuy

$$
\text { The gas laws part } 2
$$

$$
\begin{array}{ll}
P \propto \frac{1}{V} & V \propto T \quad P \propto T \\
V \propto n & \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
\end{array}
$$

A sample of gas has a volume of $15.0 \mathrm{~cm}^{3}$ at a pressure of 575 kPa . Assuming that temperature remains constant, what volume will the gas occupy at a pressure of 968 kPa ?

$$
\begin{array}{cc}
P_{1} V_{1}=P_{2} V_{2} & V_{2}=\frac{575 \times 15.0}{968} \\
V_{2}=\frac{P_{1} V_{1}}{P_{2}} & V_{2}=8.91 \mathrm{~cm}^{3}
\end{array}
$$

A sample of gas has a volume of $32.0 \mathrm{dm}^{3}$ at a temperature of $\mathbf{2 5 6}$ K. Assuming that pressure remains constant, what volume will the gas occupy at a temperature of 391 K ?

$$
\begin{array}{ll}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} & V_{2}=\frac{32.0 \times 391}{256} \\
V_{2}=\frac{V_{1} T_{2}}{T_{1}} & V_{2}=48.9 \mathrm{dm}^{3}
\end{array}
$$

A sample of gas has a pressure of 73.9 kPa at a temperature of 347 K . Assuming that volume remains constant, what will be the pressure of the gas at a temperature of 602 K ?

$$
\begin{array}{lr}
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} & P_{2}=\frac{73.9 \times 602}{347} \\
P_{2}=\frac{P_{1} T_{2}}{T_{1}} & P_{2}=128 \mathrm{kPa}
\end{array}
$$

A sample contains 5.13 mol of gas with a volume of $1.28 \mathrm{~m}^{3}$. Assuming that temperature and pressure remain constant, what volume will the gas occupy if 3.49 mol of gas are added?

$$
\begin{aligned}
& \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}} \quad V_{2}=\frac{1.28 \times 8.62}{5.13} \\
& V_{2}=\frac{V_{1} n_{2}}{n_{1}}
\end{aligned}
$$

A sample of gas has a volume of $1.54 \mathrm{~m}^{3}$ at a temperature of 447 K and a pressure of 12.0 kPa . If the temperature and pressure are changed to 561 K and 15.7 kPa respectively, what volume will the gas occupy?

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} V_{2}=\frac{1.54 \times 12.0 \times 561}{447 \times 15.7}
$$

$$
V_{2}=\frac{V_{1} P_{1} T_{2}}{T_{1} P_{2}}
$$

$$
V_{2}=1.48 \mathrm{~m}^{3}
$$

WIS J OREML
 Trutortals lor aB cheufsuy

Ideal gas equation

$$
\begin{gathered}
V \propto \frac{1}{P} \quad V \propto T \quad V \propto n \\
V \propto \frac{n T}{P} \quad V=R\left(\frac{n T}{P}\right) \\
P V=n R T
\end{gathered}
$$

$P V=n R T$

 P is pressure (Pa) V is volume (m^{3}) n is amount (mol)R is the gas constant $\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ T is temperature (K)

$$
\begin{array}{rl}
n & =\frac{P V}{R T} \\
P & =\frac{n R T}{P} \\
V & T=\frac{n R T}{n R}
\end{array}
$$

Unit conversions

Temperature in kelvin (K): ${ }^{\circ} \mathrm{C}+273$

$$
25^{\circ} \mathrm{C}=298 \mathrm{~K}
$$

Pressure in Pa: $1.00 \times 10^{5} \mathrm{~Pa}=100 \mathrm{kPa}$
$1 \mathrm{~cm}^{3}=1 \times 10^{-3} \mathrm{dm}^{3}=1 \times 10^{-6} \mathrm{~m}^{3}$
$1 \mathrm{~m}^{3}=1 \times 10^{3} \mathrm{dm}^{3}=1 \times 10^{6} \mathrm{~cm}^{3}$

$\times 1000$

$\times 1000$

Calculate the volume (in dm^{3}) occupied by 0.500 mol of gas at $1.50 \times 10^{5} \mathrm{~Pa}$ and $25.0^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& V=\frac{n R T}{P} \quad V=\frac{0.500 \times 8.31 \times 298}{150000} \\
& V=8.25 \times 10^{-3} \mathrm{~m}^{3}=8.25 \mathrm{dm}^{3}
\end{aligned}
$$

Calculate the pressure (in kPa) of 0.200 mol of gas that occupies a volume of $10.0 \mathrm{dm}^{3}$ at $20.0^{\circ} \mathrm{C}$.

$$
\begin{gathered}
P=\frac{n R T}{V} \quad P=\frac{0.200 \times 8.31 \times 293}{0.0100} \\
P=4.87 \times 10^{4} \mathrm{~Pa}=48.7 \mathrm{kPa}
\end{gathered}
$$

Ideal gas equation

Calculate the amount (in mol) of gas that occupies a volume of $20.0 \mathrm{dm}^{3}$ at $50.0^{\circ} \mathrm{C}$ and 85.0 kPa .

$$
\begin{gathered}
n=\frac{P V}{R T} \quad n=\frac{85000 \times 0.0200}{8.31 \times 323} \\
n=0.633 \mathrm{~mol}
\end{gathered}
$$

Ideal gas equation

1.10 g of an unknown gas occupies a volume of $567 \mathrm{~cm}^{3}$ at STP. Calculate the molar mass of the gas.

$$
M=\frac{m R T}{P V} \quad M=\frac{1.10 \times 8.31 \times 273}{1.00 \times 10^{5} \times 5.67 \times 10^{-4}}
$$

$$
M=44.0 \mathrm{~g} \mathrm{~mol}^{-1}
$$

