MSJChem Tutorials for IB Chemistry

Structure 1,5

Ideal gases

MSJChem Tutorials for IB Chemistry

Ideal gases vs real gases

An ideal gas is a hypothetical gas that obeys the gas laws and the kinetic-molecular theory.

- Particles of an ideal gas are in constant, random, straight-line motion.
- Collisions between particles of an ideal gas are elastic; total kinetic energy is conserved.
- The volume occupied by the particles of an ideal gas is negligible relative to the volume of the container.
- There are no intermolecular forces acting between particles of an ideal gas.
- The average kinetic energy of the particles of an ideal gas is directly proportional to the absolute temperature in kelvin.

Ideal gases vs real gases

A real gas is a gas that deviates from ideal gas behaviour.

- Real gases have a finite, measurable volume.
- Real gases have intermolecular forces that act between the particles.
- Real gases exhibit nearly ideal behaviour at relatively
- high temperatures and low pressures.
- They deviate the most from ideal behaviour at low
- temperatures and high pressures.

For one mole of an ideal gas, the product of PV/RT is equal to one (regardless of the temperature or pressure).

Ideal gases vs real gases

itals for IB Chemistry

Turor

$$n = \frac{1.00 \times 10^5 \text{ Pa} \times 0.0227 \text{ m}^3}{8.31 \text{ J K}^{-1} \text{ mol}^{-1} \times 273 \text{ K}} = 1.00 \text{ mol}$$

Real gases exhibit nearly ideal behaviour at relatively high temperatures and low pressures.

Real gases deviate the most from ideal gas behavior at high pressures and low temperatures.

$$n = \frac{PV}{RT}$$

$$n = \frac{1.00 \times 10^5 \text{ Pa} \times 0.0227 \text{ m}^3}{8.31 \text{ J K}^{-1} \text{ mol}^{-1} \times 273 \text{ K}} = 1.00 \text{ mol}$$

For real gases the product of $PV/RT \neq 1$.

MSJChem Tutorials for IB Chemistry JCI 23 23 25 VS J23 23 23 Deviation of nitrogen gas from ideal gas behavior.

At moderately high pressures, the values of PV/RT are less than one, mainly because of the effects of intermolecular forces.

Lower P_{ext} ; particles are too far apart for intermolecular forces to act Moderately high P_{ext} ; particles are now close enough for intermolecular forces to act Intermolecular attractions reduce the force of the collisions with the container wall which results in a lower pressure

At very high pressures, the values of PV/RT are greater than one, mainly because of the effects of molecular volume.

Lower P_{ext} ; the volume occupied by the gas particles is negligible compared to the volume of the container Very high P_{ext}; the volume occupied by the gas particles becomes significant

Tutorials for IB Chemistry CORI GROUPS VS FEEL GROUPS Deviation of different gases from ideal gas behaviour.

MSJChem

MSJChem

Tutorials for IB Chemistry

Real gases
Real gases deviate the most from ideal behaviour at low temperatures and high pressures
Real gases have a finite, measurable volume
Real gases have intermolecular forces acting between their particles
Real gases obey the van der Waals equation $P = \frac{RT}{V - h} - \frac{a}{V^2}$

MSJChem Tworks for IB Chemistry

Molar volume of a gas

STP : 273 K and 1.00 × 10^5 Pa

$V = \frac{1.00 \times 8.31 \times 273}{1.00 \times 10^5} = 0.0227 \text{ m}^3$

 $V_m = 0.0227 \text{ m}^3 \text{mol}^{-1} \text{ or } 22.7 \text{ dm}^3 \text{ mol}^{-1}$

STP: 273 K and 1.00×10^5 Pa $V_m (m^3 \text{ mol}^{-1}) = \frac{0.0227 \text{ m}^3}{1 \text{ mol}}$

 $V_m = 0.0227 \text{ m}^3 \text{ mol}^{-1} \text{ or } 22.7 \text{ dm}^3 \text{ mol}^{-1}$

Under conditions of STP one mole of any gas occupies a volume of 0.0227 m³ (22.7 dm³).

Model for the charactery
Model for the charactery

$$V(dm^{3}) = n \text{ (mol)} \times V_{m} (22.7 \text{ dm}^{3})$$

$$V = n \times 22.7$$

$$n \text{ (mol)} = \frac{V(dm^{3})}{V_{m} (22.7 \text{ dm}^{3})}$$

$$n = \frac{V}{22.7}$$

Calculate the volume (in dm³) occupied by 0.250 mol of N₂ at STP.

$V = n \times 22.7$ $V = 0.250 \times 22.7$ $V = 5.68 \, \mathrm{dm}^3$

MSJChem Theorem Structure of a gas Calculate the volume (in cm³) occupied by 0.00619 mol of CO_2 at STP.

$$V = n \times 22.7$$

 $V = 0.00619 \times 22.7$ $V = 0.141 \text{ dm}^3$ $0.141 \text{ dm}^3 \times \frac{1000 \text{ cm}^3}{1 \text{ dm}^3} = 141 \text{ cm}^3$

MSJChem Tutorials for IB Chemistry MOIAF VOIUME OF a gas Calculate the amount (in mol) of N₂ in a 0.742 dm³ sample.

$$n = rac{V}{22.7}$$

 $n = rac{0.742}{22.7}$

n = 0.0327 mol

MSJChem Tutorials for IB Chemistry MOIST VOIUME OF 8 9815 Calculate the amount (in mol) of CH_4 in a 2.36 cm³ sample.

MSJChem

2.36 cm³ ×
$$\frac{1 \text{ dm}^3}{1000 \text{ cm}^3}$$
 = 2.36 × 10⁻³ dm³
 $n = \frac{V}{22.7}$ $n = \frac{2.36 \times 10^{-3}}{22.7}$
 $n = 1.04 \times 10^{-4} \text{ mol}$

Determine the volume of H₂ (in cm³) produced at STP when 2.00 g of Mg is reacted with excess $HCl_{(aq)}$.

$$Mg_{(s)} + 2HCl_{(aq)} \rightarrow MgCl_{2(aq)} + H_{2(g)}$$

$$n(Mg) = \frac{2.00}{24.31} = 0.0823 \text{ mol}$$
Ratio of Mg to H₂ is 1:1
0823 mol Mg will produce 0.0823 mol H₂

0.

MSJChem Tutorials for IB Chemistry

The gas laws part 1

$P \propto \frac{1}{V}$ $V \propto T$ $P \propto T$ P_1V_1 P_2V_2 $V \propto n$ T_2 T_1

The gas laws

The gas laws Tutorials for IB Chemistry **Boyle's law - the volume occupied by a gas is inversely** proportional to its pressure (at constant *n* and *T*). PV = k $P \propto \cdot$ $P_1V_1 = P_2V_2$ 0 0 V

Charles's law - the volume occupied by a gas is directly proportional to its absolute temperature (at constant *n* and *P*).

The gas laws

Gay Lussac's law - the pressure exerted by a gas is directly proportional to its absolute temperature (at constant *n* and *V*).

The gas laws

Avogadro's law - the volume occupied by a gas is directly proportional to the amount (in mol) of gas (at constant *P* and *T*).

The das laws

The Combined gas law combines Boyle's law, Charles's law and Gay-Lussac's law.

The gas laws

MSJChem Tutorials for IB Chemistry

The gas laws part 2

$P \propto \frac{1}{V}$ $V \propto T$ $P \propto T$ P_1V_1 P_2V_2 $V \propto n$ T_2 T_1

The gas laws

A sample of gas has a volume of 15.0 cm³ at a pressure of 575 kPa. Assuming that temperature remains constant, what volume will the gas occupy at a pressure of 968 kPa?

The gas laws

 $P_1V_1 = P_2V_2$ $V_2 = \frac{575 \times 15.0}{968}$ $V_2 = \frac{P_1V_1}{P_2}$ $V_2 = 8.91 \text{ cm}^3$

A sample of gas has a volume of 32.0 dm³ at a temperature of 256 K. Assuming that pressure remains constant, what volume will the gas occupy at a temperature of 391 K?

 $\frac{32.0\times391}{256}$ V 2 $V_{2} =$ T_{2} T_1 $\frac{V_1T_2}{T_1}$ $V_2 = 48.9 \,\mathrm{dm^3}$

A sample of gas has a pressure of 73.9 kPa at a temperature of 347 K. Assuming that volume remains constant, what will be the pressure of the gas at a temperature of 602 K?

The gas laws

 $\frac{73.9\times602}{347}$ P_2 T_1 T_2 $\frac{P_1T_2}{T}$ $P_2 = 128 \text{ kPa}$

A sample contains 5.13 mol of gas with a volume of 1.28 m³. Assuming that temperature and pressure remain constant, what volume will the gas occupy if 3.49 mol of gas are added?

The gas laws

V 2 1.28×8.62 V_2 5.13 n_1 n_2 $V_1 n_2$ n_1 $V_2 = 2.15 \text{ m}^3$

MSJChem Tutorials for IB Chemistry

A sample of gas has a volume of 1.54 m³ at a temperature of 447 K and a pressure of 12.0 kPa. If the temperature and pressure are changed to 561 K and 15.7 kPa respectively, what volume will the gas occupy?

The clas laws

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} V_2 = \frac{1.54 \times 12.0 \times 561}{447 \times 15.7}$$
$$V_2 = \frac{V_1 P_1 T_2}{T_1 P_2} V_2 = 1.48 \text{ m}^3$$

MSJChem Tutorials for IB Chemistry

Ideal gas equation

ldeal gas equation

$V \propto \frac{1}{P}$ $V \propto T$ $V \propto n$ $V \propto \frac{nT}{P}$ $V = R\left(\frac{nT}{P}\right)$ PV = nRT

Ideal gas equation

PV = nRT*P* is pressure (Pa) *V* is volume (m³) *n* is amount (mol) *R* is the gas constant (8.31 J K⁻¹ mol⁻¹) T is temperature (K)

Ideal gas equation

Unit conversions Temperature in kelvin (K): °C + 273 $25^{\circ}C = 298 K$ Pressure in Pa: 1.00×10^5 Pa = 100 kPa $1 \text{ cm}^3 = 1 \times 10^{-3} \text{ dm}^3 = 1 \times 10^{-6} \text{ m}^3$ $1 \text{ m}^3 = 1 \times 10^3 \text{ dm}^3 = 1 \times 10^6 \text{ cm}^3$

Ideal gas equation

× 1000 × 1000 $1 \text{ m}^3 = 1 \times 10^3 \text{ dm}^3 = 1 \times 10^6 \text{ cm}^3$ \div 1000 \div 1000

Calculate the volume (in dm³) occupied by 0.500 mol of gas at 1.50 × 10⁵ Pa and 25.0 °C.

$V = \frac{nRT}{P} \quad V = \frac{0.500 \times 8.31 \times 298}{150000}$

$V = 8.25 \times 10^{-3} \text{ m}^3 = 8.25 \text{ dm}^3$

$P = \frac{nRT}{V} \quad P = \frac{0.200 \times 8.31 \times 293}{0.0100}$

$P = 4.87 \times 10^4 Pa = 48.7 kPa$

Calculate the amount (in mol) of gas that occupies a volume of 20.0 dm³ at 50.0 °C and 85.0 kPa.

$n = {PV \over RT}$ $n = {85000 \times 0.0200 \over 8.31 \times 323}$

n = 0.633 mol

Tutorials for IB Chemistry

1.10 g of an unknown gas occupies a volume of 567 cm³ at STP. Calculate the molar mass of the gas.

 $M = \frac{mRT}{PV} \quad M = \frac{1.10 \times 8.31 \times 273}{1.00 \times 10^5 \times 5.67 \times 10^{-4}}$

 $M = 44.0 \text{ g mol}^{-1}$