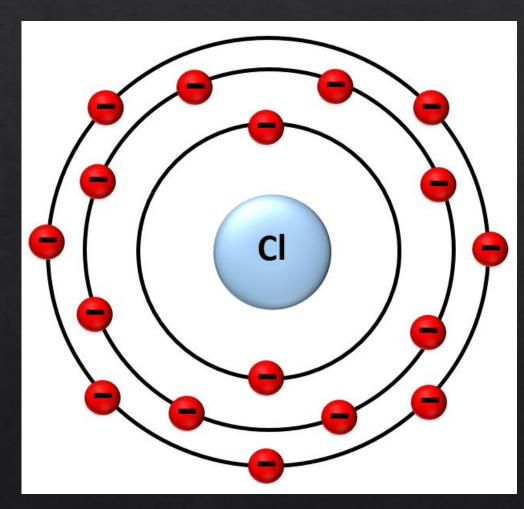
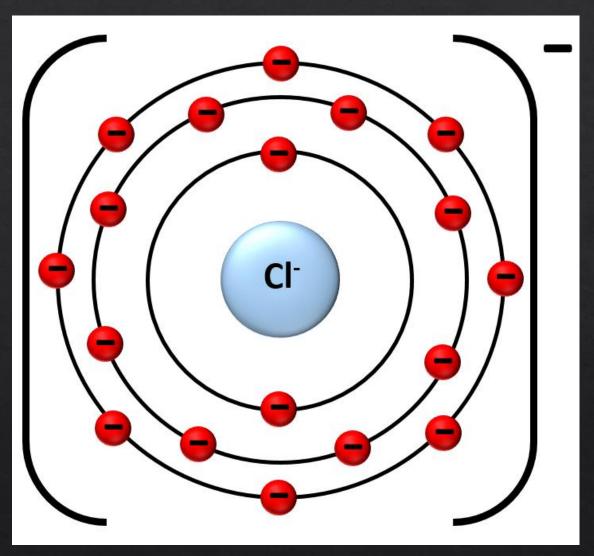

Structure 2.1

lons

Positive ions (cations)


Na⁺

1s² 2s² 2p⁶ 3s¹


 $1s^2 2s^2 2p^6$

Negative ions (anions)

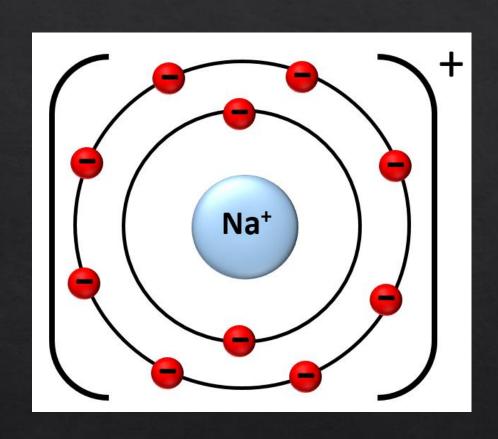
1s² 2s² 2p⁶ 3s² 3p⁵

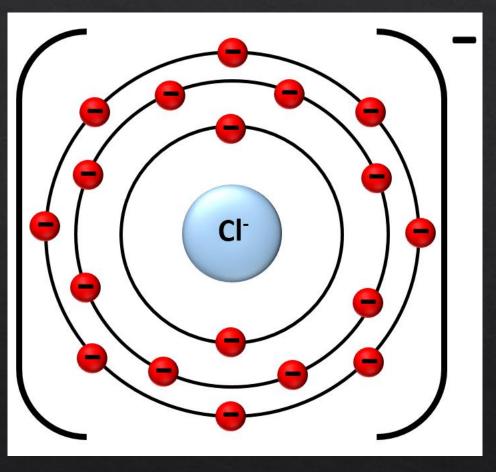
1s² 2s² 2p⁶ 3s² 3p⁶

	1+	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H 1.01	2+					Atomic Elen	number nent					3+		3-	2-	1-	2 He 4.00
2	3 Li 6.94	4 Be 9.01					Relative ma	atomic					5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.90
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
6	55 Cs 132.91	56 Ba 137.33	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.20	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Uut (286)	114 Uuq (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			t	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
			‡	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

Group number	Number of valence electrons	Charge on ion	Example
1	1	1+	Li ⁺
2	2	2+	Mg ²⁺
13	3	3+	Al ³⁺
15	5	3-	P ³⁻
16	6	2-	O ²⁻
17	7	1-	F-

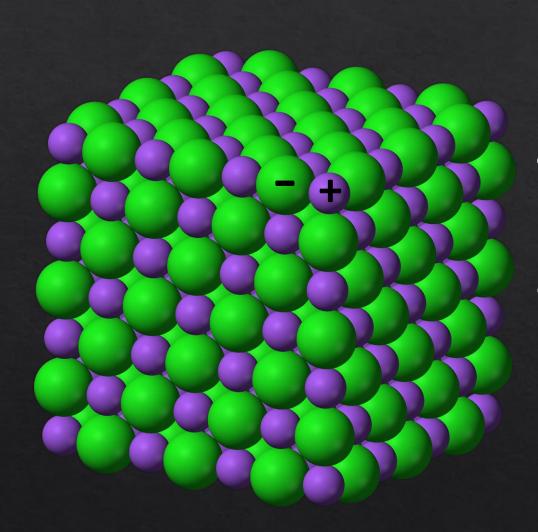
Name of ion	Charge on ion	Formula
carbonate ion	2-	CO ₃ ²⁻
sulfate ion	2-	SO ₄ ²⁻
nitrate ion	1-	NO ₃ -
hydrogen carbonate ion	1-	HCO ₃ -
phosphate ion	3-	PO ₄ ³⁻
hydroxide ion	1-	OH-
ammonium ion	1+	NH ₄ ⁺




Metals have low electronegativity values, therefore, they lose electrons to form positive ions. Non-metals have high electronegativity values, therefore, they gain electrons to form negative ions. By either losing or gaining electrons, the ions achieve the electron configuration of a noble gas. The oppositely charged ions are attracted by an electrostatic attraction (ionic bonding).

lonic bonding

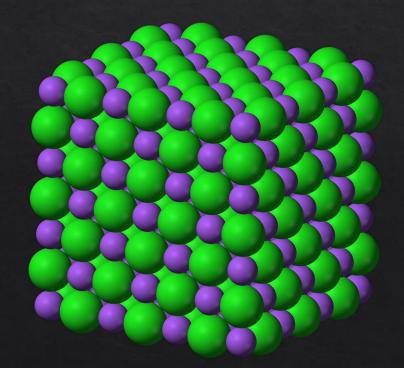
lonic bonding



An ionic bond is the electrostatic attraction between oppositely charged ions.

lonic bonding

Ionic compounds have a lattice structure.


The lattice is held together by the positive and negative charges of the oppositely charged ions. Ionic compounds are solids under standard conditions - they have high melting and boiling points.

Writing formulas of ionic compounds

Tutorials for IB Chemistry Formulas of ionic compounds

Ionic compounds consist of a lattice of oppositely charged ions held together by electrostatic attractions. A formula unit is the lowest whole number ratio of ions in an ionic compound.

Sodium chloride – NaCl The ratio of Na⁺ to Cl⁻ ions is 1:1 Magnesium chloride – MgCl₂ The ratio of Mg²⁺ to Cl⁻ ions is 1:2

or IB Chemistry Formulas of ionic compounds

How to determine the formula of an ionic compound:

- 1. You need to know the charges on the ions (cation and anion) in the compound.
- 2. Ionic compounds are neutral (no overall charge) so you need to balance out the positive and negative charges on the cation and anion.
- 3. Formulas need to be written using subscripts and brackets (where necessary).

Tutorials for IB Chemistry Formulas of ionic compounds

```
Sodium iodide
  Na<sup>+</sup>
        Nal
```

```
Calcium sulfide
   Ca<sup>2+</sup>
         CaS
```

Magnesium oxide Mg^{2+} **MgO**

Tutorials for IB Chemistry Formulas of ionic compounds

```
Lithium oxide
  Li<sup>+</sup>
  Li<sub>2</sub>
          Li<sub>2</sub>O
```

Ratio of Li⁺: O²⁻ ions is 2:1

```
Calcium chloride
    Ca<sup>2+</sup>
    Ca₁
                     Cl<sub>2</sub>
         CaCl<sub>2</sub>
```

Ratio of Ca²⁺: Cl⁻ions is 1:2

Tutorials for IB Chemistry FORMULAS OF IONIC COMPOUNDS

Magnesium nitride

Mg²⁺

 Mg_3

 N_2

Mg₃N₂

Ratio of Mg²⁺: N³⁻ions

is 3:2

Aluminium bromide

 AI^{3+}

Br⁻

 AI_1

Br₃

AlBr₃

Ratio of Al³⁺: Br⁻ions

is 1:3

Tutorials for IB Chemistry Formulas of ionic compounds

Aluminium phosphate Zinc sulfate Zn²⁺ Al³⁺ PO₄3-**SO**₄²⁻ AIPO₄ ZnSO₄

Ratio of Al³⁺: PO₄³⁻ions Ratio of Zn²⁺ : SO₄²⁻ ions is 1:1 is 1:1

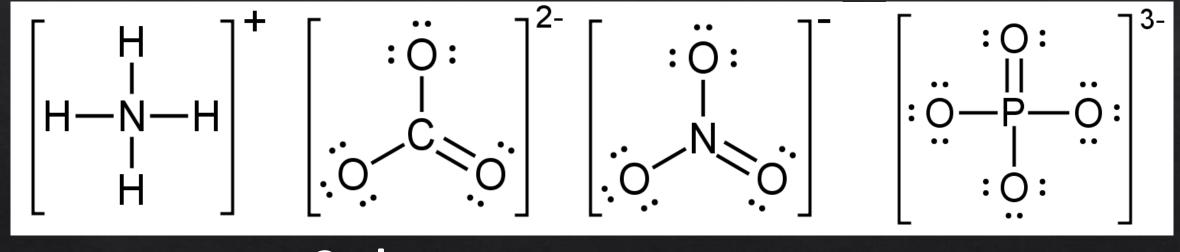
Tutorials for IB Chemistry Formulas of ionic compounds

```
Ammonium carbonate
  Iron(II) nitrate
Fe<sup>2+</sup>
                         NH_4^+ CO_3^{2-}
           NO<sub>3</sub>
Fe_1 (NO_3)_2
                         (NH_4)_2 CO_3
  Fe(NO_3)_2
                          (NH_{4})_{2}CO_{3}
```

Ratio of Fe²⁺: NO₃⁻ ions Ratio of NH₄⁺: CO₃²⁻ions is 1:2 is 2:1

Tutorials for IB Chemistry Formulas of ionic compounds

Aluminium nitrate Zinc phosphate Zn²⁺ PO₄3- AI^{3+} $NO_3^ (NO_3)_3$ $(PO_4)_2$ Zn₃ AI_1 $Zn_3(PO_4)_2$ $AI(NO_3)_3$


Ratio of Al³⁺: NO₃⁻ ions is 1:3

Ratio of Zn²⁺: PO₄³⁻ ions is 3:2

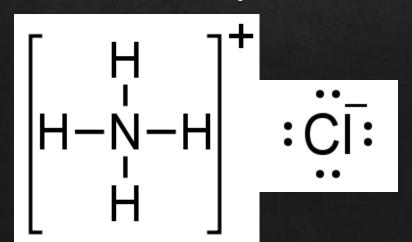
Polyatomic ions

Polyatomic ions (molecular ions) are ions that consist of two or more atoms bonded together with covalent bonds.

Ammonium ion NH₄⁺

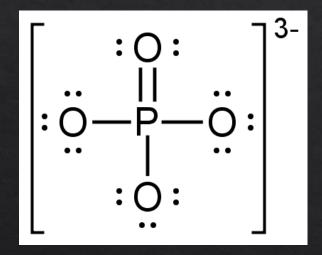
Carbonate ion CO₃²⁻

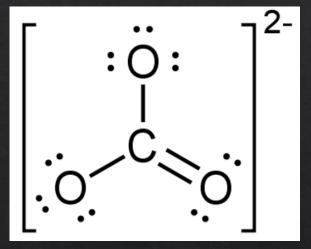
Nitrate ion NO₃-

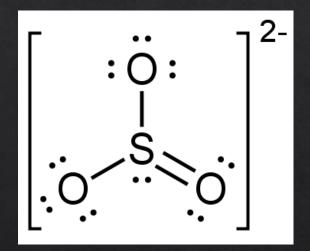

Phosphate ion PO₄³⁻

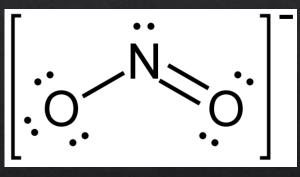
The atoms in a polyatomic ion are bonded with covalent bonds.

The bonding between the ions in a compound that contains a polyatomic ion is ionic.

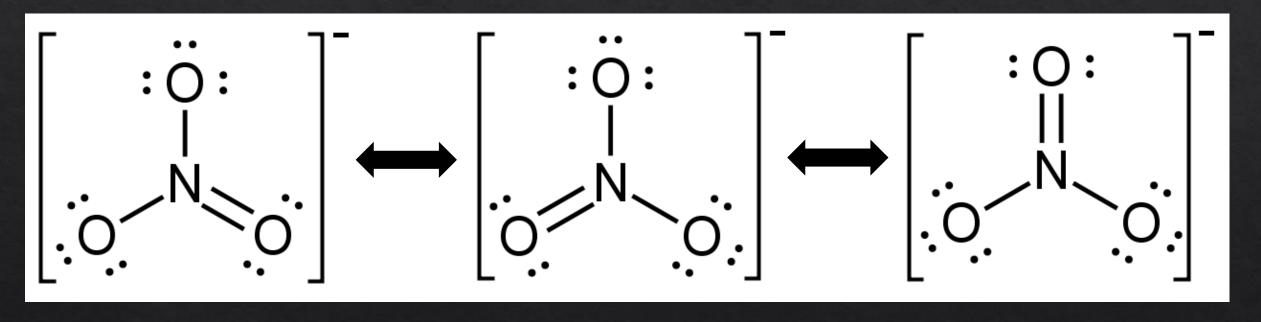

Ammonium chloride NH₄Cl


The bonds between the N and H atoms are covalent bonds. The bonds between the NH₄⁺ and Cl⁻ ions are ionic.


The geometry of a polyatomic ion depends on the number of electron domains around the central atom.


Tetrahedral

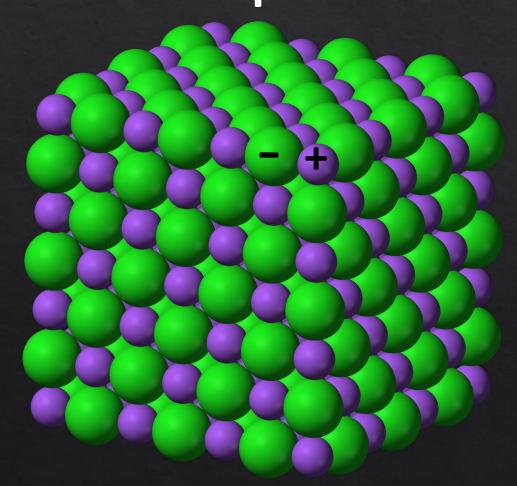
Trigonal planar


Tetrahedral
Trigonal
pyramidal

Trigonal planar Bent

Polyatomic ions with more than one position for a multiple bond exist as resonance structures.

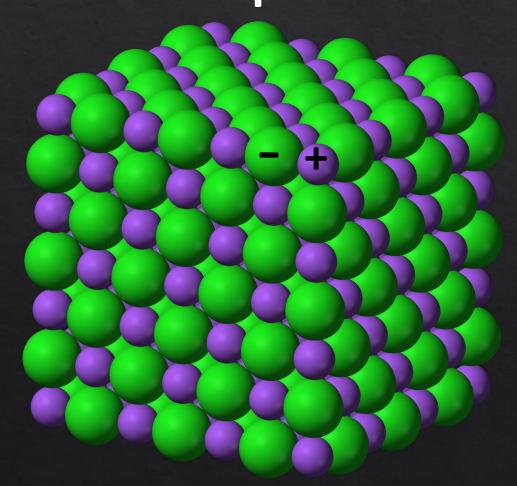
The N-O bonds are identical – intermediate in length and strength between a single and a double bond.



Name of ion	Formula	Charge
carbonate ion	CO ₃ ²⁻	2-
sulfate(VI) ion	SO ₄ ²⁻	2-
sulfate(IV) ion	SO ₃ ²⁻	2-
nitrate ion	NO ₃ -	1-
nitrite ion	NO ₂ -	1-
hydrogen carbonate ion	HCO ₃ -	1-
phosphate ion	PO ₄ ³⁻	3-
hydroxide ion	OH-	1-
ammonium ion	NH ₄ ⁺	1+

Properties of ionic compounds

Lattice structure of an ionic compound

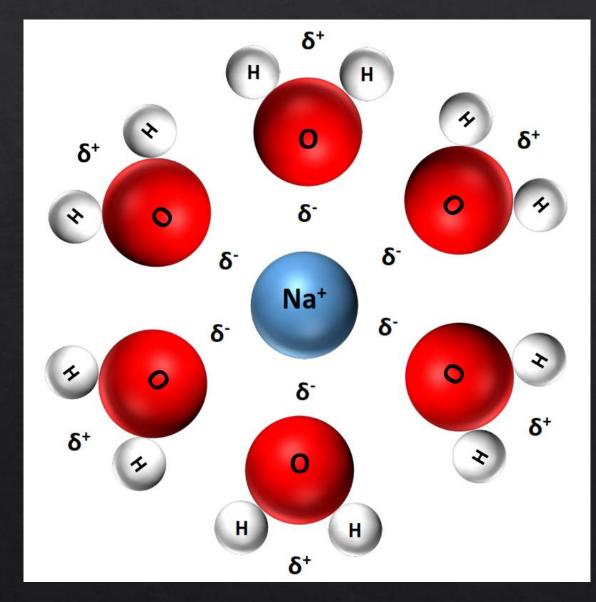


An ionic bond is the electrostatic attraction between oppositely charged ions.

The ions in the lattice structure are held in place by the strong electrostatic attractions.

Lattice structure of an ionic compound

An ionic bond is the electrostatic attraction between oppositely charged ions.


The ions in the lattice structure are held in place by the strong electrostatic attractions.

Electrical conductivity

- Solid ionic compounds do not conduct electricity because the ions are held in fixed positions.
- They only conduct electricity when melted or dissolved in water.
- When melted or dissolved, the ions are free to move and conduct electricity.

lonic compounds

Ionic compounds are soluble in polar solvents. The ions are separated from the lattice structure by the polar water molecules. The ions are then surrounded by water molecules (hydration).

Effect of ionic charge on melting point

lonic compound	Cation charge	Anion charge	Melting point (°C)
Na ₂ O	Na ⁺	O ²⁻	1132
MgO	Mg ²⁺	O ²⁻	2800

The greater the charge on the ion, the stronger the electrostatic attraction between the oppositely charged ions and the higher the melting point.

Effect of ionic radius on melting point

lonic compound	Cation radius (× 10 ⁻¹² m)	Anion radius (× 10 ⁻¹² m)	Melting point (°C)
NaF	102	133	992
KF	138	133	857

The smaller the ionic radius of the ion, the stronger the electrostatic attraction between the oppositely charged ions and the higher the melting point.

Ionic compounds only conduct electricity when molten or dissolved in solution.

They are soluble in polar solvents (such as H₂O). Ionic compounds have high melting points because of the strong electrostatic attractions between ions.

The greater the charge on the ion and the smaller the ionic radius, the higher the melting point.

Factors that affect lattice enthalpy

Lattice enthalpy

Lattice enthalpy, ΔH_{lat} , is the enthalpy change when one mole of a solid ionic compound is broken into its constituent gaseous ions.

NaCl(s)
$$\rightarrow$$
 Na⁺(g) + Cl⁻(g) $\Delta H_{lat} = +790 \text{ kJ mol}^{-1}$

$$MgCl_2(s) \rightarrow Mg^{2+}(g) + 2Cl^{-}(g) \Delta H_{lat} = +2540 \text{ kJ mol}^{-1}$$

CaO(s)
$$\rightarrow$$
 Ca²⁺(g) + O²⁻(g) $\Delta H_{lat} = +3401 \text{ kJ mol}^{-1}$

Lattice enthalpy

Effect of ionic radius on ΔH_{lat}

lonic compound		Cation radius (× 10 ⁻¹² m)	ΔH _{lat} (kJ mol ⁻¹)	Melting point (°C)
NaF	133	102	+930	993
KF	133	138	+829	858

The smaller the ionic radius of the ion, the stronger the electrostatic attraction between the oppositely charged ions and the higher the melting point.

Lattice enthalpy

Effect of ionic charge on ΔH_{lat}

lonic compound	Anion charge	Cation charge	ΔH _{lat} (kJ mol ⁻¹)	Melting point (°C)
Na ₂ O	2-	1+	+2481	1132
MgO	2-	2+	+3791	2852

The greater the charge on the ion, the stronger the electrostatic attraction between the oppositely charged ions and the higher the melting point.