MSJChem Tworks for IB Chemistry

Structure 2.2 HL

Resonance structures

Resonance structures

Resonance structures occur when there is more than one position for a double bond in a molecule.

The actual structure is a resonance hybrid structure.

The bond lengths and bond strengths in the carbonate ion are identical. They are intermediate in length and strength between a single and a double bond.

Resonance structures

Nitrate ion NO₃⁻

Resonance structures

Ethanoate ion CH₃COO⁻

Benzene C₆H₆

Resonance structures

- Resonance structures occur when there is more than one position for a multiple bond in a molecule or ion this means that it is possible to draw more than one Lewis structure.
- The actual structure of the molecule (or ion) is a resonance hybrid structure in which the bonds are intermediate in length and strength between a single and a double bond.
- Resonance structures have delocalised electrons which are shared over more than two nuclei.

Molecules with delocalised trelectrons

Delocalised Tr electrons

Delocalised π electrons are electrons that are shared between more than two nuclei.

They exist in all molecules or ions for which there is more than one Lewis structure (resonance structures).

Delocalised Tr electrons

Benzene C₆H₆

Benzene contains a total of 6 pi electrons - one from each unhybridised p orbital.

Delocalised Tr electrons

Ethanoate ion CH₃COO⁻

Ozone, O₃

Nitrate ion NO_3^- Carbonate ion CO_3^{2-} Sulfate ion SO_4^{2-}

All molecules or ions that have more than one possible Lewis structure (resonance structures) contain delocalised pi electrons shared over more than two nuclei.

Delocalised Tr electrons

Ethanoate ion CH₃COO⁻

Ozone, O₃

Evidence for the structure of benzene

Structure of benzene for IB Chemistry The Kekulé structure of benzene consists of alternating single and double carbon to carbon bonds.

All C to C bonds would be different lengths and strengths. The enthalpy of hydrogenation of benzene would be -360 kJ mol⁻¹ **Benzene would undergo addition** reactions. Two possible isomers produced in 1,2-dibsubtituted benzene compounds.

Structure of benzene The C to C bonds in benzene are of equal length and equal strength.

Bond	Bond length (×10 ⁻¹² m)	Bond strength (kJ mol ⁻¹)
C-C	154	346
C = C	140	507
C=C	134	614

The length and strength of the C to C bonds in benzene are equal - intermediate between a single and a double bond.

The enthalpy of hydrogenation of benzene is less than predicted.

The difference in energy (-150 kJ mol⁻¹) is known as the resonance energy.

Benzene undergoes substitution reactions, rather than addition reactions.

Structure of benzene

Only one isomer exists for 1,2-disubstituted compounds such as 1,2-dibromobenzene.

Tutorials for IB Chemistry

Kekule structure	Actual structure
Alternating single and double C-C bonds	All C-C bonds are of equal length and equal strength
Enthalpy of hydrogenation is –360 kJ mol ⁻¹	Enthalpy of hydrogenation is -210 kJ mol ⁻¹
Benzene undergoes addition reactions	Benzene undergoes substitution reactions
Two isomers produced in the reactions with the halogens	Only one isomers exists

Structure of benzene

The actual structure of benzene is a planar regular hexagon (bond angles of 120°).

The ring represents the delocalised electrons within the benzene molecule.

MSJChem Tworks for IB Chemistry

Molecular geometry

PCl₅ phosphorus pentachloride

electron	bonding	lone	electron domain	molecular	bond
domains	domains	pairs	geometry	geometry	angle
5	5	0	trigonal	trigonal	90 °
			bipyramidal	bipyramidal	120 °

SF₄ sulfur tetrafluoride

electron	bonding	lone	electron domain	molecular	bond
domains	domains	pairs	geometry	geometry	angle
5	4	1	trigonal bipyramidal	see-saw	<90° <120°

CIF₃ chlorine trifluoride

electron	bonding	lone	electron domain	molecular	bond
domains	domains	pairs	geometry	geometry	angle
5	3	2	trigonal bipyramidal	T-shaped	<90°

l₃triiodide ion

electron	bonding	lone	electron domain	molecular	bond
domains	domains	pairs	geometry	geometry	angle
5	2	3	trigonal bipyramidal	linear	180 °

SF₆ sulfur hexafluoride

electron	bonding	lone	electron domain	molecular	bond
domains	domains	pairs	geometry	geometry	angle
6	6	0	octahedral	octahedral	90 °

BrF₅ bromine pentafluoride

electron	bonding	lone	electron domain	molecular	bond
domains	domains	pairs	geometry	geometry	angle
6	5	1	octahedral	square pyramidal	<90 °

XeF₄ xenon tetrafluoride

electron	bonding	lone	electron domain	molecular	bond
domains	domains	pairs	geometry	geometry	angle
6	4	2	octahedral	square planar	90 °

Formal charge

Formal charge

Formal charge is used to determine which Lewis structure is preferred when more than one is possible.

The formal charge is the charge an atom would have if all the atoms in a molecule had the same electronegativity.

The preferred Lewis structure is the one where the individual atoms have a formal charge that is <u>closest to zero.</u>

The formal charge of an atom in a compound is calculated using the following equation:

The possible Lewis structures for SO₂ are shown below.

The preferred Lewis structure is the one where the individual atoms have a formal charge closest to zero, therefore the structure on the right is the preferred one.

Two possible Lewis structures for N_2O are shown below.

The structure on the left has the negative formal charge on the more electronegative atom (oxygen), therefore it is the preferred Lewis structure.

MSJChem Formal Charge Three possible Lewis structures for the nitrate ion (NO_3^-) are shown below.

For ions, the sum of the formal charges must be equal to the overall charge on the ion.

Three possible Lewis structures for the nitrate ion (NO_3^{-}) are shown below.

For ions, the sum of the formal charges must be equal to the overall charge on the ion.

sigma (or) and pi (m) bonds

sigma (o) and pi (Tr) bonds

A sigma bond is formed by the head-on overlap of atomic orbitals.

 σ bond

The electron density is concentrated between the nuclei of the bonding atoms.

s orbital overlaps head-on with p orbital (s-p)

Two p orbitals overlap head-on (p-p)

Two s orbitals overlap head-on (s-s)

A pi bond is formed by sideways overlap of atomic orbitals. This results in electron density above and below the plane of the nuclei of the bonding atoms.

Tutorials for IB Chemistry SIGMEI (O) EINCI DI (TT) DONCIS

Tutorials for IB Chemistry Signa (O) and pi (T) bonds

Type of overlap	Type of bond formed
s-s head-on (axial)	sigma (σ)
s-p head-on (axial)	sigma (σ)
p-p head-on (axial)	sigma (σ)
p-p sideways (lateral)	pi (π)

MSJChem Tutorials for IB Chemistry Signal (O) and pi (T) bonds

Type of bond	sigma (σ)	pi (π)
Single covalent	1	0
Double covalent	1	1
Triple covalent	1	2

6 σ bonds 1 π bond

sigma (o) and pi (Tr) bonds

 9σ bonds 9π bonds

H-C \equiv N 2 σ bonds 2 π bonds

Hybridisation

Hybridisation is the mixing of atomic orbitals to produce hybrid orbitals used for bonding.

sp³ hybridisation

its ground state

sp² hybridisation

its excited state

orbitals

sp hybridisation

Hybridisation is the mixing of atomic orbitals to produce hybrid orbitals used for bonding.

sp³ hybridisation sp² hybridisation sp hybridisation

Hybridisation and molecular geometry

Number of electron domains	Hybridisation	Electron domain geometry	Molecular geometry	Bond angle	Examples
2	sp	Linear	Linear	180 °	$CO_2 C_2H_2$
3	sp²	Trigonal planar	Trigonal planar	120 °	C ₂ H ₄ BF ₃
4	sp ³	Tetrahedral	Tetrahedral, bent, trigonal pyramidal	≤ 109.5°	CH ₄ H ₂ O NH ₃

Hybridisation and molecular geometry

Hydrazine

н-N-N-H Н Н

H H H H - C - C - C - O - H H H H

Propan-1-ol

Ethanal

Methoxyethane

H = C = C = NH = C = NH = C = NH = C = NH = C = N

Pyridine H H C H C N H C H H