Structure 2.4

Bonding triangle

Electronegativity difference $\Delta \chi$

Tutorials for IB Chemistry Type of lonic Δχ Σχ bond **Moderate-Moderate** lonic high **Moderate-**Covalent Low high **Metallic** Low Low **Metallic** Covalent Average electronegativity $\Sigma \chi$

Bonding triangle

chem

Tutorials for IB Chemistry

Bond triangle diagram

Electronegativity difference: $\Delta \chi = \chi_a - \chi_b$

Chlorine, Cl_2 $\Delta \chi = 3.2 - 3.2$ $\Delta \chi = 0$

Tutorials for IB Chemistry

Cesium fluoride, CsF₂
$$\Delta \chi = 4.0 - 0.8$$

 $\Delta \chi = 3.2$

Magnesium, Mg $\Delta \chi = 1.3 - 1.3$ $\Delta \chi = 0$ Hydrogen chloride, HCl $\Delta \chi = 3.2 - 2.2$ $\Delta \chi = 1.0$

Bond triangle diagram Tutorials for IB Chemistry Average electronegativity: $\Sigma \chi =$ Chlorine, Cl₂ Ce $\Sigma\chi=\frac{(3.2+3.2)}{2}$

esium fluoride, CsF₂
$$\Sigma \chi = \frac{(4.0 + 0.8)}{2}$$
$$\Sigma \chi = 2.4$$

 $\underline{(\chi_a + \chi_b)}$

Hydrogen chloride, HCl

$$\Sigma \chi = \frac{(3.2 + 2.2)}{2}$$

 $\Sigma \chi = 2.7$

Magnesium, Mg

$$\Sigma \chi = \frac{(1.3 + 1.3)}{2}$$

 $\Sigma \chi = 1.3$

 $\Sigma \chi = 3.2$

Bonding triangle

Species	Δχ	Σχ	Type of bonding
Chlorine	0	3.2	Non-polar covalent
Hydrogen chloride	1.0	2.7	Polar covalent
Cesium fluoride	3.2	2.4	lonic
Magnesium	0	1.3	Metallic

Type of bonding	State at room temperature	Boiling and melting points	Electrical conductivity	Solubility in water
Covalent	Mainly gases and liquids	Low	Low	Low
lonic	Solid	High	Depends on state	Most are soluble
Metallic	Solid	High	High	Insoluble

MSJChem Tườnas for IB Chemistry

Alloys are materials that are composed of two or more metals or a metal and a non-metal.

lattice of positive metal ions

delocalised electrons

The bonding in metals is non-directional. The force of attraction between the positive metal ions and the delocalised electrons acts in every direction around the fixed metal ions.

Alloys have enhanced properties (increased tensile strength and increased resistance to corrosion).

pure metal

In a pure metal the layers can slide over each other.

The presence of different metal atoms means the layers cannot slide over each other as easily.

Alloys have different properties to the metals that they are made from.

- They tend to be harder (less malleable) and have
- greater tensile strength (stronger).
- The added metal atoms can distort the lattice

structure.

The distortion of the lattice structure makes it more difficult for the layers to slide over each other.

MSJChem Tworlals for IB Chemisiry

Introduction to polymers

polyethene

A polymer is a substance that consists of very large molecules called macromolecules, composed of many repeating subunits, which are known as monomers.

ethene monomers

Polymers can be natural or synthetic; some examples are shown in the table below.

Natural polymers	Synthetic polymers
Cellulose	Nylon
Starch	Polyethene
Collagen	PVC (polyvinyl chloride)

Property of polymer	Explanation
Electrical and heat	No delocalised electrons to conduct electricity
insulator	or heat
Flexible	Weak intermolecular forces between the
	polymer chains
Durable	Strong covalent bonds between the atoms in
	the polymer chains
Can be moulded into	The weak intermolecular forces between the
different shapes	polymer chains can be overcome by heat
Lightweight / low densities	Polymer chains do not pack closely together

Addition polymerisation

PVC or poly(vinyl chloride) is a polymer made from the monomer unit chloroethene (vinyl chloride).

repeating unit

$$\begin{pmatrix}
H & CI \\
- & -C \\
- & -C \\
- & - \\
H & H \\
\end{pmatrix}_{n}$$

MSJChem Addition polymerisation Poly(propene) is an addition polymer made from the monomer unit propene.

Addition polymerisation The polymerisation of 2-methylpropene forms the polymer poly(2-methylpropene) or butyl rubber.

Tutorials for IB Chemistry

MSJChem Tutorials for IB Chemistry Addition polymerisation Draw the structure of the polymer made from three 2-methylpropene monomer units.

Every second carbon atom is bonded to two methyl (CH₃) groups.