Stoichiometric Relationships Part one (answers) IB CHEMISTRY SL/HL 16 **S** Sulfur 32.065 J 6 C Carbon 12.0107 2 **He** Helium 4.002602 # **Syllabus objectives:** # **Understandings:** - Atoms of different elements combine in fixed ratios to form compounds, which have different properties from their component elements. - Mixtures contain more than one element and/or compound that are not chemically bonded together and so retain their individual properties. - Mixtures are either homogeneous or heterogeneous. ## **Applications and skills:** - Deduction of chemical equations when reactants and products are specified. - Application of the state symbols (s), (l), (g) and (aq) in equations. - Explanation of observable changes in physical properties and temperature during changes of state. # Elements, compounds and mixtures - All substances are made up of one or more elements. - An element is a substance that cannot be broken down into a simpler substance by chemical means. - All known elements are included on the periodic table which is shown below. | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |---|-----------------------------------|---------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|----------------------------| | 1 | 1
H
1.01 | | | | | | Atomic Eler | number
nent | | | | | | | | | | 2
He
4.00 | | 2 | 3
Li
6.94 | 4
Be
9.01 | | | | | Relative
ma | atomic
ass | | | | | 5
B
10.81 | 6
C
12.01 | 7
N
14.01 | 8
O
16.00 | 9
F
19.00 | 10
Ne
20.18 | | 3 | 11
Na
22.99 | 12
Mg
24.31 | | | | | | | | | | | 13
Al
26.98 | 14
Si
28.09 | 15
P
30.97 | 16
S
32.07 | 17
Cl
35.45 | 18
Ar
39.95 | | 4 | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 5 | 39.10
37
Rb
85.47 | 38
Sr
87.62 | 39
Y
88.91 | 47.87
40
Zr
91.22 | 50.94
41
Nb
92.91 | 52.00
42
Mo
95.96 | 54.94
43
Tc
(98) | 55.85
44
Ru
101.07 | 58.93
45
Rh
102.91 | 58.69
46
Pd
106.42 | 63.55
47
Ag
107.87 | 65.38
48
Cd
112.41 | 69.72
49
In
114.82 | 72.63
50
Sn
118.71 | 74.92
51
Sb
121.76 | 78.96
52
Te
127.60 | 79.90
53
I
126.90 | 54
Xe
131,29 | | 6 | 55
Cs
132.91 | 56
Ba
137.33 | 57 † La 138.91 | 72
Hf
178,49 | 73
Ta
180.95 | 74
W
183,84 | 75
Re
186,21 | 76
Os
190.23 | 77
Ir
192.22 | 78
Pt
195.08 | 79
Au
196,97 | 80
Hg
200.59 | 81
Tl
204.38 | 82
Pb
207.20 | 83
Bi
208.98 | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | 7 | 87
Fr
(223) | 88
Ra
(226) | 89 ‡
Ac
(227) | 104
Rf
(267) | 105
Db
(268) | 106
Sg
(269) | 107
Bh
(270) | 108
Hs
(269) | 109
Mt
(278) | 110
Ds
(281) | 111
Rg
(281) | 112
Cn
(285) | 113
Uut
(286) | 114
Uuq
(289) | 115
Uup
(288) | 116
Uuh
(293) | 117
Uus
(294) | 118
Uuo
(294) | | | | | t | 58
Ce
140.12 | 59
Pr
140.91 | 60
Nd
144.24 | 61
Pm
(145) | 62
Sm
150.36 | 63
Eu
151.96 | 64
Gd
157.25 | 65
Tb
158.93 | 66
Dy
162.50 | 67
Ho
164.93 | 68
Er
167.26 | 69
Tm
168.93 | 70
Yb
173.05 | 71
Lu
174.97 | | | | | | ‡ | 90
Th
232.04 | 91
Pa
231.04 | 92
U
238.03 | 93
Np
(237) | 94
Pu
(244) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | 100
Fm
(257) | 101
Md
(258) | 102
No
(259) | 103
Lr
(262) | | #### Compounds - A compound is formed from two or more different elements chemically joined in a fixed ratio. - Compounds have different properties from the elements that they are made from. # $sodium + chlorine \rightarrow sodium \ chloride \\ 2Na_{(s)} + Cl_{2(g)} \rightarrow 2NaCl_{(s)}$ - The properties of the compound above (NaCl) are different from the elements that it is made from. - Sodium is a very reactive metal and chlorine is a poisonous gas. The product formed, NaCl, is safe for human consumption in small amounts. #### **Mixtures** - Mixtures contain more than one element and/or compound that are not chemically bonded together and so retain their individual properties. - Mixtures can be either homogeneous or heterogeneous. - A homogeneous mixture has the same uniform appearance and composition throughout (for example, a salt solution). - A heterogeneous mixture consists of visibly different substances or phases (for example, sand and water). - Matter can be divided into pure substances or mixtures, as can be seen in the flow chart below. #### **Exercises:** 1. Distinguish between an element and compound. An element is composed of one type of atom only, whereas a compound is composed of two or more different types of atoms chemically combined. 2. Distinguish between a homogeneous and a heterogeneous mixture. Homogeneous mixtures have the same composition throughout whereas heterogeneous mixtures do not have the same composition throughout. ## States of matter The changes of state are shown below. - Melting is the change of state from a solid to a liquid. - Freezing is the change of state from a liquid to a solid. - Evaporating is the change of state form a liquid to a gas. - Condensing is the change of state from a gas to a liquid. - Sublimation is the change of state from a solid to a gas. - Deposition is the change of state from a gas to a solid. Particle models of solids, liquids and gases The particle models of a solid, liquid and gas are shown below. **Exercise:** Complete the table to show the properties of the following states of matter. | Property | solid | liquid | gas | | | |-----------------|----------------------|----------------------|--------------------------------------|--|--| | | | | | | | | shape | Fixed shape | No fixed shape | Have the same shape as the container | | | | volume | Fixed volume | Fixed volume | No fixed volume | | | | compressibility | Cannot be compressed | Cannot be compressed | Can be compressed | | | | fluidity | Cannot flow | Can flow | Can flow | | | # Physical and chemical changes - In a physical change, no new substances are produced. - The melting of ice is a physical change and can be represented by the following equation: $$H_2O_{(s)} \rightarrow H_2O_{(l)}$$ • Evaporation of bromine: $$Br_{2(I)} \rightarrow Br_{2(g)}$$ Sublimation of iodine: $$I_{2(s)} \rightarrow I_{2(g)}$$ - A chemical change results in the formation of new chemical substances. - In a chemical reaction, the atoms in the reactants are rearranged to form new products. #### **Example:** $$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(I)}$$ The combustion of methane (shown in the equation above) is a chemical change as new chemical substances are formed (CO₂ and H₂O). # **Balancing chemical equations** - The law of the conservation of mass states that mass (and therefore atoms) is conserved in a chemical reaction. - Therefore, there must be the same number of each type of atom in the reactants and products, as shown in the diagram below. $$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$$ • To balance a chemical equation, we can only change the numbers in front of the reactants or products which are called coefficients. #### Example 1: • There is one Na atom in the reactants and one in the products. However, there are two Cl atoms in the reactants but only one in the products. $$Na_{(s)} + CI_{2(g)} \rightarrow NaCI_{(s)}$$ Na 1 Na 1 Cl 2 Cl 1 Write the balanced equation: $$2Na_{(s)} + Cl_{2(g)} \rightarrow 2NaCl_{(s)}$$ ## Example 2: $$CaCO_{3(s)} + HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_2O_{(I)} + CO_{2(g)}$$ Write the balanced equation: $$CaCO_{3(s)} + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_2O_{(l)} + CO_{2(g)}$$ # State symbols - State symbols show the physical state (solid, liquid, gas or aqueous) of the reactants and products in a chemical equation. - (s) solid - (I) liquid - (g) gas - (aq) aqueous (in solution) #### **Example:** $$2Na_{(s)} + 2H_2O_{(l)} \rightarrow 2NaOH_{(aq)} + H_{2(g)}$$ #### **Exercise:** Balance the following chemical equations using whole numbers. When each equation is balanced, calculate the sum of coefficients in the equations. #### Answers: 1. $$CH_{4(g)} + {2O_{2(g)}} \rightarrow CO_{2(g)} + {2H_2O_{(l)}}$$ Sum of coefficients: 6 2. $$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(l)}$$ Sum of coefficients: 13 3. $${}^{2}CH_{3}OH_{(I)} + {}^{3}O_{2(g)} \rightarrow {}^{2}CO_{2(g)} + {}^{4}H_{2}O_{(I)}$$ Sum of coefficients: 11 4. $$Mg(s) + 2HCI_{(aq)} \rightarrow MgCI_{2(aq)} + H_{2(g)}$$ Sum of coefficients: 5 5. $$CaCO_{3(s)} + {}^{2}HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_{2}O_{(l)} + CO_{2(g)}$$ Sum of coefficients: 6 6. $$2NaCl_{(aq)} + CaO_{(aq)} \rightarrow CaCl_{2(aq)} + Na_2O_{(aq)}$$ Sum of coefficients: 5 7. $$8AI_{(s)} + 3Fe_3O_{4(s)} \rightarrow 4AI_2O_{3(s)} + 9Fe_{(s)}$$ Sum of coefficients: 24 8. $$Mg_3N_{2(s)} + 4H_2SO_{4(aq)} \rightarrow 3MgSO_{4(aq)} + (NH_4)_2SO_{4(aq)}$$ Sum of coefficients: 9 9. $$Fe_2O_{3(s)} + {}_{3}C_{(s)} \rightarrow {}_{2}Fe_{(s)} + {}_{3}CO_{(g)}$$ Sum of coefficients: 9 10. $${}^{2}AI(OH)_{3(s)} + {}^{3}H_{2}SO_{4(aq)} \rightarrow AI_{2}(SO_{4})_{3(aq)} + {}^{6}H_{2}O_{(I)}$$ Sum of coefficients: 12