Stoichiometric Relationships Part two (answers)

IB CHEMISTRY SL/HL

Syllabus objectives

Understandings:

- The mole (mol) is a fixed number of particles and refers to the amount, *n*, of substance.
- Masses of atoms are compared on a scale relative to ¹²C and are expressed as relative atomic mass (*A*_r) and relative formula/molecular mass (*M*_r).
- Molar mass (*M*) has the unit g mol⁻¹.
- The empirical formula and molecular formula of a compound give the simplest ratio and the actual number of atoms present in a molecule respectively.

Applications and skills:

- Calculation of the molar masses of atoms, ions, molecules and formula units.
- Solution of problems involving the relationships between the number of particles, the amount of substance in moles and the mass in grams.
- Interconversion of the percentage composition by mass and the empirical formula.
- Determination of the molecular formula of a compound from its empirical formula and molar mass.
- Obtaining and using experimental data for deriving empirical formulas from reactions involving mass changes.

The mole and amount of substance

- The mole, symbol mol, is the SI unit of amount of substance (*n*).
- It is a measure of the number of specified elementary entities (an elementary entity can refer to an atom, a molecule, an ion, an electron, or any other particle).
- One mole contains exactly $6.02214076 \times 10^{23}$ elementary entities (usually rounded to 6.02×10^{23}).
- This is numerically equal to the Avogadro constant (L or N_A) which is 6.02×10^{23} mol⁻¹

Elementary entity	Number of elementary entities in one mole
Atoms	6.02 × 10 ²³
Molecules	6.02 × 10 ²³
lons	6.02 × 10 ²³
Formula units	6.02 × 10 ²³

Relative atomic mass and relative molecular mass

- Relative atomic mass, A_r, is the weighted average mass of the naturally occurring isotopes of an element relative to 1/12 the mass of an atom of carbon-12.
- The relative atomic mass scale is based on the isotope carbon-12 which has a mass of exactly 12 amu.
- Relative molecular mass, *M*_r, is the weighted average mass of a molecule relative to 1/12 the mass of an atom of ¹²C.
- The M_r is the sum of the A_r of the atoms in a molecule.
- Both relative atomic mass and relative molecular mass do not have units.
- Relative formula mass is mostly used for compounds that do not form molecules, such as ionic compounds.

Exercise: Calculate the relative molecular mass/formula mass of the following.

- 1. $C_2H_5OH M_r = 46.08$
- 2. CH₃COCH₃ *M*_r = 58.09
- 3. $C_6H_{12}O_6 M_r = 180.18$
- 4. KCl *M*_r = 74.55
- 5. $MgBr_2 M_r = 184.11$

Molar mass (M)

- The molar mass (*M*) is the mass of one mole of a substance in grams.
- The unit for molar mass is g mol⁻¹
- The molar mass of a substance is numerically equal to its relative atomic mass.
- To convert A_r to M, multiply by the molar mass constant, M_u, which is approximately equal to 1 g mol⁻¹

Example: Determine the molar mass of H₂O

 H_2O is composed of 2 H atoms and 1 O atom. Find the relative atomic mass (A_r) of the elements from the periodic table and add them together. Multiply by the molar mass constant to get the molar mass.

(2 × 1.01) + (1 × 16.00) = 18.02

18.02 × 1 g mol⁻¹ = 18.02 g mol⁻¹

The molar mass of H_2O is 18.02 g mol⁻¹

Exercise: determine the molar mass of the following:

Substance	Molar mass (g mol ⁻¹)	Substance	Molar mass (g mol ⁻¹)	Substance	Molar mass (g mol ⁻¹)
H ₂	2.02	CO ₂	44.01	CaCl ₂	110.98
O ₂	32.00	HCI	36.46	Al ₂ O ₃	101.96
Cl ₂	70.90	CH4	16.05	NH ₄ NO ₃	80.04
l ₂	253.80	NH ₃	17.04	Al ₂ (SO ₄) ₃	342.15

Calculations involving amount (n), mass (m) and molar mass (M)

• To convert from mass (in g) to amount (in mol), divide the mass of the substance by its molar mass.

amount (mol) = $\frac{mass (g)}{molar mass (g mol^{-1})}$

$$n(\text{mol}) = \frac{m(g)}{M(g \text{ mol}^{-1})}$$
 $n = \frac{m}{M}$

This equation can be rearranged to find calculate (*m*) and molar mass (*M*):

$$m = n \times M$$
 $M = \frac{m}{n}$

STOICHIOMETRIC RELATIONSHIPS PART TWO

WWW.MSJCHEM.COM

Excercises:

- 1. Calculate the amount in mol of the following:
 - a. 30.00 g Mg f. 45.82 g CaCl₂ 30.00 ÷ 24.31 = 1.234 mol 45.82 ÷ 110.98 = 0.4129 mol b. 75.00 g O₂ g. 98.36 g Al₂O₃ 75.00 ÷ 32.00 = 2.344 mol 98.36 ÷ 101.96 = 0.9647 mol c. 26.93 g CuSO₄ h. 173.81 g NH₄NO₃ 26.93 ÷ 159.61 = 0.1687 mol 173.81 ÷ 80.04 = 2.172 mol d. 15.00 g NaOH i. 118.62 g Al₂(SO₄)₃ 15.00 ÷ 40.00 = 0.3750 mol 118.62 ÷ 342.15 = 0.3467 mol e. 1.78 g C₃H₈ j. 261.04 g Fe₂O₃ 1.78 ÷ 44.11 = 0.0404 mol 261.04 ÷ 159.69 = 1.635 mol
- 2. Calculate the mass in grams of the following:
- a. 3.00 mol Mg
 3.00 × 24.31 = 72.93 g
- b. 0.100 mol O₂
 0.100 × 32.00 = 3.20 g
- c. 0.400 mol CuSO₄
 0.400 × 159.61 = 63.8 g
- d. 9.84 mol NaOH
 9.84 × 40.00 = 394 g
- e. 0.270 mol C₃H₈
 0.270 × 44.11 = 11.9 g

- f. 0.600 mol CaCl₂
- 0.600 × 110.98 = 66.6 g
- g. 3.56 mol Al_2O_3
 - 3.56 × 101.96 = 363 g
- h. 2.40 mol NH₄NO₃ 2.40 × 80.04 = 192 g
- i. 0.850 mol Al₂(SO₄)₃
 0.850 × 342.15 = 291 g
- j. 0.0593 mol Fe₂O₃ 0.0593 × 159.69 = 9.47 g

The relationship between number of particles, mol (n) and mass (m)

- One mole of any substance contains 6.02 × 10²³ particles (atoms, molecules, formula units).
- The molar mass (M) of a substance is the mass (g) of one mole of a substance.

Example:

1. Calculate the number of H_2O molecules in 18.02 g of pure water.

First, convert to amount (in mol):

$$n = \frac{m}{M}$$
 $n = \frac{18.02}{18.02} = 1 \mod H_2O$

Next, convert to number of molecules:

One mole of any substance contains 6.02×10^{23} molecules

1 mol of H₂O contains 6.02×10^{23} H₂O molecules

2. Calculate the mass of one molecule of H₂O:

One mole of H_2O (6.02 × 10^{23} H_2O molecules) has a mass of 18.02 g

One molecule has a mass of $\frac{18.02}{6.02 \times 10^{23}}$ = 2.99 × 10⁻²³ g

3. Determine the number of H atoms in one mol of H_2O . One molecule of H_2O is composed of 2 H atoms and 1 O atom.

One mole of H_2O has $6.02 \times 10^{23} H_2O$ molecules

 $2 \times 6.02 \times 10^{23} = 1.20 \times 10^{24}$ H atoms

Exercises:

1. Calculate the number of molecules in the following:

a.	0.500 mol CH ₄	3.01×10^{23} molecules CH ₄
b.	0.750 mol SO ₂	4.52×10^{23} molecules SO ₂
c.	1.08 mol C₂H₅OH	6.50×10^{23} molecules C ₂ H ₅ OH
d.	2.50 mol C ₃ H ₈	1.51×10^{24} molecules C ₃ H ₈
e.	$1.45 \times 10^{-3} \text{ mol NH}_3$	8.73×10^{20} molecules NH ₃

2. Calculate the total number of atoms in the following:

a. 0.500 mol CH ₄	$3.01 \times 10^{23} \times 5 = 1.51 \times 10^{24}$
b. 0.750 mol SO ₂	$4.52 \times 10^{23} \times 3 = 1.36 \times 10^{24}$
c. 1.08 mol C ₂ H ₅ OH	$6.50 \times 10^{23} \times 9 = 5.85 \times 10^{24}$
d. 2.50 mol C ₃ H ₈	$1.51 \times 10^{24} \times 11 = 1.66 \times 10^{25}$
e. 1.45×10^{-3} mol NH ₃	$8.73 \times 10^{20} \times 4 = 3.49 \times 10^{21}$

3. Calculate the number of molecules in the following:

a.	25.00 g of propanone, C_3H_6O	$(25.00 \div 58.09) \times 6.02 \times 10^{23} = 2.59 \times 10^{23}$
b.	50.12 g of ethane, C_2H_6	$(50.12 \div 30.08) \times 6.02 \times 10^{23} = 1.00 \times 10^{24}$
C.	13.74 g of glucose, C ₆ H ₁₂ O ₆	$(13.74 \div 180.18) \times 6.02 \times 10^{23} = 4.59 \times 10^{22}$
d.	71.83 g of water, H ₂ O	$(71.83 \div 18.02) \times 6.02 \times 10^{23} = 2.40 \times 10^{24}$
e.	134.20 g of hexane, C_6H_{14}	$(134.20 \div 86.20) \times 6.02 \times 10^{23} = 9.37 \times 10^{23}$

STOICHIOMETRIC RELATIONSHIPS PART TWO

WWW.MSJCHEM.COM

4. Calculate the number of hydrogen atoms in:

a. 0.750 mol CH ₄	$6.02 \times 10^{23} \times 4 \times 0.750 = 1.81 \times 10^{24} \text{ H}$ atoms
b. 1.24 mol C ₂ H ₅ OH	$6.02 \times 10^{23} \times 6 \times 1.24 = 4.48 \times 10^{24} \text{ H}$ atoms
c. 0.913 mol C ₃ H ₈	$6.02 \times 10^{23} \times 8 \times 0.913 = 4.40 \times 10^{24} \text{ H}$ atoms
d. 2.45 mol C ₅ H ₁₀	$6.02 \times 10^{23} \times 10 \times 2.45 = 1.47 \times 10^{25}$ H atoms
e. $6.90 \times 10^{-4} \text{ mol NH}_3$	$6.02 \times 10^{23} \times 3 \times 6.90 \times 10^{-4} = 1.25 \times 10^{21}$ H atoms

- 5. Calculate the number of ions in:
- a. 1.00 mol of NaCl (Na⁺ Cl⁻) $6.02 \times 10^{23} \times 2 \times 1.00 = 1.20 \times 10^{24}$ ions
- b. 0.500 mol of Na₂O $(2 \times Na^+ O^{2-}) 6.02 \times 10^{23} \times 3 \times 0.500 = 9.03 \times 10^{23} \text{ ions}$
- c. 1.45 mol of MgCl₂ (Mg²⁺ 2 × Cl⁻) $6.02 \times 10^{23} \times 3 \times 1.45 = 2.62 \times 10^{24}$ ions
- 6. Calculate the following:
- a. The number of ethanol molecules in a drop of ethanol $(2.30 \times 10^{-3} \text{ g})$. $M_r C_2H_5OH = 46.07 \text{ g mol}^{-1}$ $n = m \div M = 2.30 \times 10^{-3} \div 46.07 = 4.99 \times 10^{-5} \text{ mol } C_2H_5OH$ $4.99 \times 10^{-5} \times 6.02 \times 10^{23} = 3.00 \times 10^{19} \text{ molecules } C_2H_5OH$
- b. The mass of one molecule of ethane (C_2H_6) .

Mass of one molecule = $30.07 \div 6.02 \times 10^{23} = 5.00 \times 10^{-23}$ g

c. The amount (in mol) of O_2 that contains 1.80×10^{22} molecules.

 $1.8 \times 10^{22} \div 6.02 \times 10^{23} = 0.0299 \text{ mol } O_2$

d. The mass of 3.01×10^{23} molecules of H₂O. $3.01 \times 10^{23} \div 6.02 \times 10^{23} = 0.500$ mol H₂O

 $m = nM = 0.500 \times 18.02 = 9.01 \text{ g H}_2\text{O}$

e. The number of iodine atoms in 0.835 mol of I_2

 $0.835 \times 6.02 \times 10^{23} = 5.03 \times 10^{23}$ molecules of I₂

One molecule of $I_2 = 2$ atoms of iodine

 $5.03 \times 10^{23} \times 2 = 1.01 \times 10^{24}$ iodine atoms

STOICHIOMETRIC RELATIONSHIPS PART TWO

WWW.MSJCHEM.COM

Empirical formula and molecular formula

- Empirical formula is the lowest whole number ratio of atoms in a compound.
- Molecular formula is the actual number of atoms in a compound.

Example:

- Butane has the molecular formula C₄H₁₀
- The empirical formula is C₂H₅ how was this determined? Divide the 4 and 10 by 2 to give 2 and 5.

Exercise:

State the empirical formula of the following compounds:

- 1. H₂O₂ HO
- 2. $C_2H_6 CH_3$
- $3. \quad C_4H_8 \ {\hbox{\rm CH}}_2$
- 4. $C_6H_{12}O_6 CH_2O$
- 5. $C_{20}H_{14}O_4 \ C_{10}H_7O_2$

Calculating empirical formula from percentage composition by mass

Example:

The relative molecular mass of aluminium chloride is 267 and its composition by mass is 20.3% aluminium (Al) and 79.7% chlorine (Cl).

Determine the empirical and molecular formula of aluminium chloride.

1. Check that the % add up to 100 %

20.3 % + 79.7 % = 100 %

2. Divide the % of each element by its relative atomic mass.

Al	C1
20.3	79.7
26.98	35.45

3. Divide each number in part (2) by the smallest ratio - this will give you the empirical formula of the compound.

Al	Cl	
0.752	2.25	
0.752	0.752	
1	3	
Empirical formula AlCl ₃		

4. To find the molecular formula from the empirical formula – determine the mass of the empirical formula and divide the molecular formula by the mass of the empirical formula.

$$\frac{267}{133.33} = 2.00$$

Molecular formula Al₂Cl₆

Exercises:

Compound B has the following percentage composition by mass: C 26.7%, O 71.1% and H 2.2%. Calculate the empirical formula of compound B.

2. C	Н	0	
26.7	2.2	71.1	
12.01	1.01	16.00	
2.22	2.2	4.44	
2.2	2.2	2.2	
1	1	2	

Empirical formula: CHO₂

3. Compound **C** has the following percentage composition by mass: 48.6% C, 10.8% H, 21.6% O and 18.9% N. Calculate the empirical formula of compound **C**.

4. C	Н	0	Ν
48.6	10.8	21.6	18.9
12.01	1.01	16.00	14.01
4.04	10.7	1.35	1.35
1.35	1.35	1.35	1.35
3	8	1	1
Empirical formula: C ₃ H ₈ ON			

- 4. Determine the molecular formula of each of the following given the empirical formula and the relative molecular mass, M_r
 - a. CH_2 , $M_r = 70$ CH_2 , $M_r = 70 (12.01) + (2 \times 1.01) = 14.03$ $70 \div 14.03 = 5$ $CH_2 \times 5 = C_5H_{10}$

b. OH, *M*_r = 34

OH, *M*_r = 34 (16.00) + (1.01) = 17.01 34 ÷ 17.01 = 2 OH × 2 = H₂O₂

- c. C_2H_5O , $M_r = 90$ C_2H_5O , $M_r = 90$ (2 × 12.01) + (5 × 1.01) + (16.00) = 45.07 $90 \div 45.07 = 2$ $C_2H_5O \times 2 = C_4H_{10}O_2$
- 5. An organic compound A contains 62.0% by mass of carbon, 24.1% by mass of nitrogen, the remainder being hydrogen.
- a. Determine the percentage by mass of hydrogen and the empirical formula of A.

С	Ν	Н	
62.0	24.1	13.9	
12.01	14.01	1.01	
5.16	1.72	13.8	
1.72	1.72	1.72	

Empirical formula: C₃NH₈

b. The relative molecular mass of A is 116. Determine the molecular formula of A. $(3 \times 12.01) + (14.01) + (8 \times 1.01) = 58.12$

116 ÷ 58.12 = 2

 $2 \times C_3 N H_8 = C_6 N_2 H_{16}$

Molecular formula: C₆N₂H₁₆

Percentage composition by mass

• Percentage composition by mass is the percentage by mass of elements in a compound.

Example: Find the percentage by mass of carbon in ethanol (C₂H₅OH).

(24.02 / 46.08) × 100 = 52.1 %

Exercises:

Calculate the percentage by mass of carbon in the following:

- 1. CO₂ (12.01 44.01) × 100 = 27.3 %
- 2. C₂H₆ (24.02 ÷ 30.08) × 100 = 79.9 %
- 3. C₆H₅NO₂ (72.06 ÷ 123.11) × 100 = 58.5 %
- 4. C₆H₁₂O₆ (72.06 ÷ 180.16) × 100 = 40.0 %
- C₆H₅COCH₃ (96.08 ÷ 120.16) × 100 = 80.0 %

Percentage purity

• Percentage purity is the percentage of a pure compound in an impure sample.

% purity =
$$\frac{\text{mass of pure compound in sample}}{\text{total mass of impure sample}} \times 100$$

Exercise:

A 150.0 g sample of copper ore contains 87.3 g of pure copper. Calculate the percentage purity.

% purity =
$$\frac{87.3}{150.0} \times 100 = 58.2$$
 %

STOICHIOMETRIC RELATIONSHIPS PART TWO

Calculating empirical formula from combustion analysis

Menthol is an organic compound composed of C, H and O atoms. The complete combustion of 0.1005 g of menthol produces 0.2829 g of CO_2 and 0.1159 g of H_2O . Calculate the empirical formula of menthol.

1. Calculate the mass of carbon in CO_2 and convert to mol.

Calculate the mass of C in 0.2829 g of CO_2 Convert to amount in mol (*n*)

 $\frac{12.01}{44.01} \times 0.2829 = 0.07720 \text{ g of C} \qquad n = \frac{0.07720}{12.01} = 6.428 \times 10^{-3} \text{ mol C}$

2. Calculate the mass of H in H_2O and convert to mol.

Calculate the mass of H in 0.1159 g of H_2O Convert to amount in mol (n)

$$\frac{2.02}{18.02}$$
 × 0.1159 = 0.01299 g of H $n = \frac{0.01299}{1.01}$ = 0.01286 mol H

3. Calculate the mass of O by subtracting the mass of carbon and mass of hydrogen from original mass of menthol. Convert to amount in mol.

Calculate the mass of O in 0.1005 g of menthol	Convert to amount in mol (n)
0.1005 – 0.07720 – 0.01299 = 0.01031 g O	$n = rac{0.01031}{16.00}$ = 6.444 × 10 ⁻⁴ mol O

4. Divide each amount by the smallest to get the lowest whole number ratio.

6.428 × 10 ⁻³ mol C	0.01286 mol H	6.444 × 10 ⁻⁴ mol O
6.444 × 10 ⁻⁴	6.444 × 10 ⁻⁴	6.444 × 10 ⁻⁴
10	20	1

Empirical formula: C10H20O