Stoichiometric Relationships Part two (answers)

IB CHEMISTRY SL/HL

25	16		6	2	25
$1 /$		\pm			
$\begin{aligned} & \text { Manganese } \\ & 54.938045 \end{aligned}$	$\begin{aligned} & \text { Sulfur } \\ & 32.065 \end{aligned}$		$\begin{aligned} & \text { Carbon } \\ & 12.0107 \end{aligned}$	$\begin{aligned} & \text { Helium } \\ & 4.002602 \end{aligned}$	Manganese 54.938045

Syllabus objectives

Understandings:

- The mole (mol) is a fixed number of particles and refers to the amount, n, of substance.
- Masses of atoms are compared on a scale relative to ${ }^{12} \mathrm{C}$ and are expressed as relative atomic mass $\left(A_{r}\right)$ and relative formula/molecular mass (M_{r}).
- Molar mass (M) has the unit $\mathrm{g} \mathrm{mol}^{-1}$.
- The empirical formula and molecular formula of a compound give the simplest ratio and the actual number of atoms present in a molecule respectively.

Applications and skills:

- Calculation of the molar masses of atoms, ions, molecules and formula units.
- Solution of problems involving the relationships between the number of particles, the amount of substance in moles and the mass in grams.
- Interconversion of the percentage composition by mass and the empirical formula.
- Determination of the molecular formula of a compound from its empirical formula and molar mass.
- Obtaining and using experimental data for deriving empirical formulas from reactions involving mass changes.

The mole and amount of substance

- The mole, symbol mol, is the SI unit of amount of substance (n).
- It is a measure of the number of specified elementary entities (an elementary entity can refer to an atom, a molecule, an ion, an electron, or any other particle).
- One mole contains exactly $6.02214076 \times 10^{23}$ elementary entities (usually rounded to 6.02×10^{23}).
- This is numerically equal to the Avogadro constant (L or N_{A}) which is $6.02 \times 10^{23} \mathrm{~mol}^{-1}$

Elementary entity	Number of elementary entities in one mole
Atoms	6.02×10^{23}
Molecules	6.02×10^{23}
Ions	6.02×10^{23}
Formula units	6.02×10^{23}

Relative atomic mass and relative molecular mass

- Relative atomic mass, A_{r}, is the weighted average mass of the naturally occurring isotopes of an element relative to $1 / 12$ the mass of an atom of carbon- 12 .
- The relative atomic mass scale is based on the isotope carbon- 12 which has a mass of exactly 12 amu .
- Relative molecular mass, M_{r}, is the weighted average mass of a molecule relative to $1 / 12$ the mass of an atom of ${ }^{12} \mathrm{C}$.
- The M_{r} is the sum of the A_{r} of the atoms in a molecule.
- Both relative atomic mass and relative molecular mass do not have units.
- Relative formula mass is mostly used for compounds that do not form molecules, such as ionic compounds.

Exercise: Calculate the relative molecular mass/formula mass of the following.

1. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \mathrm{M}_{\mathrm{r}}=46.08$
2. $\mathrm{CH}_{3} \mathrm{COCH}_{3} \mathrm{M}_{\mathrm{r}}=58.09$
3. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} M_{\mathrm{r}}=180.18$
4. $\mathrm{KCl} M_{\mathrm{r}}=74.55$
5. $\mathrm{MgBr}_{2} \mathrm{Mr}_{\mathrm{r}}=184.11$

Molar mass (M)

- The molar mass (M) is the mass of one mole of a substance in grams.
- The unit for molar mass is $\mathrm{g} \mathrm{mol}^{-1}$
- The molar mass of a substance is numerically equal to its relative atomic mass.
- To convert A_{r} to M, multiply by the molar mass constant, M_{u}, which is approximately equal to $1 \mathrm{~g} \mathrm{~mol}^{-1}$

Example: Determine the molar mass of $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$ is composed of 2 H atoms and 1 O atom. Find the relative atomic mass $\left(A_{r}\right)$ of the elements from the periodic table and add them together. Multiply by the molar mass constant to get the molar mass.
$(2 \times 1.01)+(1 \times 16.00)=18.02$
$18.02 \times 1 \mathrm{~g} \mathrm{~mol}^{-1}=18.02 \mathrm{~g} \mathrm{~mol}^{-1}$
The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $18.02 \mathrm{~g} \mathrm{~mol}^{-1}$
Exercise: determine the molar mass of the following:

Substance	Molar mass $\left(\mathbf{g ~ m o l}^{-1}\right)$	Substance	Molar mass $\left(\mathbf{g ~ m o l}^{-1}\right)$	Substance	Molar mass $\left(\mathbf{g ~ m o l}^{-1}\right)$
H_{2}	2.02	CO_{2}	44.01	CaCl_{2}	110.98
O_{2}	32.00	HCl	36.46	$\mathrm{Al}_{2} \mathrm{O}_{3}$	101.96
Cl_{2}	70.90	CH_{4}	16.05	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	80.04
I_{2}	253.80	NH_{3}	17.04	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	342.15

Calculations involving amount (n), mass (m) and molar mass (M)

- To convert from mass (in g) to amount (in mol), divide the mass of the substance by its molar mass.

$$
\operatorname{amount}(\operatorname{mol})=\frac{\operatorname{mass}(\mathrm{g})}{\operatorname{molar} \operatorname{mass}\left(\mathrm{g} \mathrm{~mol}^{-1}\right)}
$$

$$
n(\mathrm{~mol})=\frac{m(\mathrm{~g})}{M\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)} \quad n=\frac{m}{M}
$$

This equation can be rearranged to find calculate (m) and molar mass (M):

$$
m=n \times M \quad M=\frac{m}{n}
$$

Excercises:

1. Calculate the amount in mol of the following:
a. $\quad 30.00 \mathrm{~g} \mathrm{Mg}$
$30.00 \div 24.31=1.234 \mathrm{~mol}$
b. $75.00 \mathrm{~g} \mathrm{O}_{2}$
$75.00 \div 32.00=2.344 \mathrm{~mol}$
c. $26.93 \mathrm{~g} \mathrm{CuSO}_{4}$
$26.93 \div 159.61=0.1687 \mathrm{~mol}$
d. 15.00 g NaOH
$15.00 \div 40.00=0.3750 \mathrm{~mol}$
e. $1.78 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$
$1.78 \div 44.11=0.0404 \mathrm{~mol}$
f. $45.82 \mathrm{~g} \mathrm{CaCl}_{2}$
$45.82 \div 110.98=0.4129 \mathrm{~mol}$
g. 98.36 g Al $_{2} \mathrm{O}_{3}$

$$
98.36 \div 101.96=0.9647 \mathrm{~mol}
$$

h. $173.81 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$ $173.81 \div 80.04=2.172 \mathrm{~mol}$
i. $118.62 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ $118.62 \div 342.15=0.3467 \mathrm{~mol}$
j. 261.04 g Fe$_{2} \mathrm{O}_{3}$ $261.04 \div 159.69=1.635 \mathrm{~mol}$
2. Calculate the mass in grams of the following:
a. $\quad 3.00 \mathrm{~mol} \mathrm{Mg}$
f. 0.600 mol CaCl 2
$0.600 \times 110.98=66.6 \mathrm{~g}$
b. $0.100 \mathrm{~mol} \mathrm{O}_{2}$
g. $3.56 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
$3.56 \times 101.96=363 \mathrm{~g}$
c. $\quad 0.400 \mathrm{~mol} \mathrm{CuSO}_{4}$
$0.400 \times 159.61=63.8 \mathrm{~g}$
d. 9.84 mol NaOH
h. $2.40 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$
$2.40 \times 80.04=192 \mathrm{~g}$
$9.84 \times 40.00=394 \mathrm{~g}$
e. $0.270 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
$0.270 \times 44.11=11.9 \mathrm{~g}$
i. $0.850 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ $0.850 \times 342.15=291 \mathrm{~g}$
j. $0.0593 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$
$0.0593 \times 159.69=9.47 g$

The relationship between number of particles, $\mathrm{mol}(n)$ and mass (m)

- One mole of any substance contains 6.02×10^{23} particles (atoms, molecules, formula units).
- The molar mass (M) of a substance is the mass (g) of one mole of a substance.

Atoms Molecules Formula units	multiply by 6.02×10^{23} divide by 6.02×10^{23}	Amount in mol	divide by molar mass multiply by molar mass

Example:

1. Calculate the number of $\mathrm{H}_{2} \mathrm{O}$ molecules in 18.02 g of pure water.

First, convert to amount (in mol):

$$
n=\frac{m}{M} \quad n=\frac{18.02}{18.02}=1 \mathrm{~mol} \mathrm{H} \mathrm{O}
$$

Next, convert to number of molecules:
One mole of any substance contains 6.02×10^{23} molecules
1 mol of $\mathrm{H}_{2} \mathrm{O}$ contains $6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
2. Calculate the mass of one molecule of $\mathrm{H}_{2} \mathrm{O}$:

One mole of $\mathrm{H}_{2} \mathrm{O}\left(6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}\right.$ molecules $)$ has a mass of 18.02 g
One molecule has a mass of $\frac{18.02}{6.02 \times 10^{23}}=2.99 \times 10^{-23} \mathrm{~g}$
3. Determine the number of H atoms in one mol of $\mathrm{H}_{2} \mathrm{O}$.

One molecule of $\mathrm{H}_{2} \mathrm{O}$ is composed of 2 H atoms and 1 O atom.
One mole of $\mathrm{H}_{2} \mathrm{O}$ has $6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
$2 \times 6.02 \times 10^{23}=1.20 \times 10^{24} \mathrm{H}$ atoms

Exercises:

1. Calculate the number of molecules in the following:
a. $0.500 \mathrm{~mol} \mathrm{CH}_{4} \quad 3.01 \times 10^{23}$ molecules CH_{4}
b. $0.750 \mathrm{~mol} \mathrm{SO}_{2}$
4.52×10^{23} molecules SO_{2}
c. $1.08 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
6.50×10^{23} molecules $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
d. $2.50 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
1.51×10^{24} molecules $\mathrm{C}_{3} \mathrm{H}_{8}$
e. $1.45 \times 10^{-3} \mathrm{~mol} \mathrm{NH}_{3}$
8.73×10^{20} molecules NH_{3}
2. Calculate the total number of atoms in the following:
a. $0.500 \mathrm{~mol} \mathrm{CH}_{4}$
$3.01 \times 10^{23} \times 5=1.51 \times 10^{24}$
b. $0.750 \mathrm{~mol} \mathrm{SO}_{2}$
$4.52 \times 10^{23} \times 3=1.36 \times 10^{24}$
c. $1.08 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$6.50 \times 10^{23} \times 9=5.85 \times 10^{24}$
d. $2.50 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
$1.51 \times 10^{24} \times 11=1.66 \times 10^{25}$
e. $1.45 \times 10^{-3} \mathrm{~mol} \mathrm{NH}_{3}$
$8.73 \times 10^{20} \times 4=3.49 \times 10^{21}$
3. Calculate the number of molecules in the following:
a. 25.00 g of propanone, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ $(25.00 \div 58.09) \times 6.02 \times 10^{23}=2.59 \times 10^{23}$
b. 50.12 g of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$
$(50.12 \div 30.08) \times 6.02 \times 10^{23}=1.00 \times 10^{24}$
c. 13.74 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$(13.74 \div 180.18) \times 6.02 \times 10^{23}=4.59 \times 10^{22}$
d. 71.83 g of water, $\mathrm{H}_{2} \mathrm{O}$
$(71.83 \div 18.02) \times 6.02 \times 10^{23}=2.40 \times 10^{24}$
e. 134.20 g of hexane, $\mathrm{C}_{6} \mathrm{H}_{14}$
$(134.20 \div 86.20) \times 6.02 \times 10^{23}=9.37 \times 10^{23}$
4. Calculate the number of hydrogen atoms in:
a. $\quad 0.750 \mathrm{~mol} \mathrm{CH}_{4}$
$6.02 \times 10^{23} \times 4 \times 0.750=1.81 \times 10^{24} \mathrm{H}$ atoms
b. $1.24 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$6.02 \times 10^{23} \times 6 \times 1.24=4.48 \times 10^{24} \mathrm{H}$ atoms
c. $\quad 0.913 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
$6.02 \times 10^{23} \times 8 \times 0.913=4.40 \times 10^{24} \mathrm{H}$ atoms
d. $2.45 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{10}$
$6.02 \times 10^{23} \times 10 \times 2.45=1.47 \times 10^{25} \mathrm{H}$ atoms
e. $6.90 \times 10^{-4} \mathrm{~mol} \mathrm{NH}_{3}$
$6.02 \times 10^{23} \times 3 \times 6.90 \times 10^{-4}=1.25 \times 10^{21} \mathrm{H}$ atoms
5. Calculate the number of ions in:
a. $\quad 1.00 \mathrm{~mol}$ of NaCl
$\left(\mathrm{Na}^{+} \mathrm{Cl}^{-}\right) 6.02 \times 10^{23} \times 2 \times 1.00=1.20 \times 10^{24}$ ions
b. 0.500 mol of $\mathrm{Na}_{2} \mathrm{O}$
$\left(2 \times \mathrm{Na}^{+} \mathrm{O}^{2-}\right) 6.02 \times 10^{23} \times 3 \times 0.500=9.03 \times 10^{23}$ ions
c. 1.45 mol of $\mathrm{MgCl}_{2}\left(\mathrm{Mg}^{2+} 2 \times \mathrm{Cl}^{-}\right) 6.02 \times 10^{23} \times 3 \times 1.45=2.62 \times 10^{24}$ ions
6. Calculate the following:
a. The number of ethanol molecules in a drop of ethanol $\left(2.30 \times 10^{-3} \mathrm{~g}\right)$.
$\mathrm{Mr}_{\mathrm{r}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46.07 \mathrm{~g} \mathrm{~mol}^{-1}$
$n=m \div M=2.30 \times 10^{-3} \div 46.07=4.99 \times 10^{-5} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ $4.99 \times 10^{-5} \times 6.02 \times 10^{23}=3.00 \times 10^{19}$ molecules $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b. The mass of one molecule of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$.

Mass of one molecule $=30.07 \div 6.02 \times 10^{23}=5.00 \times 10^{-23} \mathrm{~g}$
c. The amount (in mol) of O_{2} that contains 1.80×10^{22} molecules.
$1.8 \times 10^{22} \div 6.02 \times 10^{23}=0.0299 \mathrm{~mol} \mathrm{O}_{2}$
d. The mass of 3.01×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}$.
$3.01 \times 10^{23} \div 6.02 \times 10^{23}=0.500 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$m=n M=0.500 \times 18.02=9.01 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
e. The number of iodine atoms in 0.835 mol of I_{2}
$0.835 \times 6.02 \times 10^{23}=5.03 \times 10^{23}$ molecules of I_{2}
One molecule of $I_{2}=2$ atoms of iodine
$5.03 \times 10^{23} \times 2=1.01 \times 10^{24}$ iodine atoms

Empirical formula and molecular formula

- Empirical formula is the lowest whole number ratio of atoms in a compound
- Molecular formula is the actual number of atoms in a compound.

Example:

- Butane has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10}$
- The empirical formula is $\mathrm{C}_{2} \mathrm{H}_{5}$ - how was this determined?

Divide the 4 and 10 by 2 to give 2 and 5 .

Exercise:

State the empirical formula of the following compounds:

1. $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{HO}$
2. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{CH}_{3}$
3. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{CH}_{2}$
4. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{CH}_{2} \mathrm{O}$
5. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{2}$

Calculating empirical formula from percentage composition by mass

Example:

The relative molecular mass of aluminium chloride is 267 and its composition by mass is 20.3% aluminium (AI) and 79.7% chlorine (CI).
Determine the empirical and molecular formula of aluminium chloride.

1. Check that the $\%$ add up to 100%

$$
20.3 \%+79.7 \%=100 \%
$$

2. Divide the \% of each element by its relative atomic mass.

Al	Cl
$\frac{20.3}{26.98}$	$\frac{79.7}{35.45}$

3. Divide each number in part (2) by the smallest ratio - this will give you the empirical formula of the compound.

Al	Cl
$\frac{0.752}{0.752}$	$\frac{2.25}{0.752}$
1	3
Empirical formula AlCl_{3}	

4. To find the molecular formula from the empirical formula - determine the mass of the empirical formula and divide the molecular formula by the mass of the empirical formula.
$\frac{267}{133.33}=2.00$
Molecular formula $\mathrm{Al}_{2} \mathrm{Cl}_{6}$

Exercises:

1. Compound \mathbf{B} has the following percentage composition by mass: $\mathrm{C} 26.7 \%, \mathrm{O} 71.1 \%$ and H 2.2%. Calculate the empirical formula of compound \mathbf{B}.

2. C	H	O
26.7	2.2	71.1
12.01	1.01	16.00
2.22	2.2	4.44
2.2	2.2	2.2
1	1	2

Empirical formula: CHO_{2}
3. Compound \mathbf{C} has the following percentage composition by mass: $48.6 \% \mathrm{C}, 10.8 \% \mathrm{H}$, $21.6 \% \mathrm{O}$ and $18.9 \% \mathrm{~N}$. Calculate the empirical formula of compound \mathbf{C}.

4. C	H	O	N
48.6	10.8	21.6	18.9
12.01	1.01	16.00	14.01
4.04	10.7	1.35	1.35
1.35	1.35	1.35	1.35
3	8	1	1
Empirical formula: $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{ON}$			

4. Determine the molecular formula of each of the following given the empirical formula and the relative molecular mass, M_{r}
a. $\mathrm{CH}_{2}, \mathrm{M}_{\mathrm{r}}=70$

$$
\begin{aligned}
& \mathrm{CH}_{2}, \mathrm{M}_{\mathrm{r}}=70(12.01)+(2 \times 1.01)=14.03 \\
& 70 \div 14.03=5 \\
& \mathrm{CH}_{2} \times 5=\mathrm{C}_{5} \mathrm{H}_{10}
\end{aligned}
$$

b. $\mathrm{OH}, \mathrm{Mr}_{\mathrm{r}}=34$
$\mathrm{OH}, M_{\mathrm{r}}=34(16.00)+(1.01)=17.01$
$34 \div 17.01=2$
$\mathrm{OH} \times 2=\mathrm{H}_{2} \mathrm{O}_{2}$
c. $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, \mathrm{Mr}_{\mathrm{r}}=90$

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, \mathrm{M}_{\mathrm{r}}=90(2 \times 12.01)+(5 \times 1.01)+(16.00)=45.07 \\
& 90 \div 45.07=2 \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \times 2=\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}
\end{aligned}
$$

5. An organic compound A contains 62.0% by mass of carbon, 24.1% by mass of nitrogen, the remainder being hydrogen.
a. Determine the percentage by mass of hydrogen and the empirical formula of \mathbf{A}.

C	N	H
62.0	24.1	13.9
12.01	14.01	1.01
5.16	1.72	13.8
1.72	1.72	1.72

Empirical formula: $\mathrm{C}_{3} \mathrm{NH}_{8}$
b. The relative molecular mass of \mathbf{A} is 116 . Determine the molecular formula of \mathbf{A}.

$$
\begin{aligned}
& (3 \times 12.01)+(14.01)+(8 \times 1.01)=58.12 \\
& 116 \div 58.12=2 \\
& 2 \times \mathrm{C}_{3} \mathrm{NH}_{8}=\mathrm{C}_{6} \mathrm{~N}_{2} \mathrm{H}_{16} \\
& \text { Molecular formula: } \mathrm{C}_{6} \mathrm{~N}_{2} \mathrm{H}_{16}
\end{aligned}
$$

Percentage composition by mass

- Percentage composition by mass is the percentage by mass of elements in a compound.

Example: Find the percentage by mass of carbon in ethanol ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$).
$(24.02 / 46.08) \times 100=52.1 \%$

Exercises:

Calculate the percentage by mass of carbon in the following:

1. CO_{2}
(12.01 44.01) $\times 100=27.3 \%$
2. $\mathrm{C}_{2} \mathrm{H}_{6}$
$(24.02 \div 30.08) \times 100=79.9 \%$
3. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
$(72.06 \div 123.11) \times 100=58.5 \%$
4. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$(72.06 \div 180.16) \times 100=40.0 \%$
5. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
$(96.08 \div 120.16) \times 100=80.0 \%$

Percentage purity

- Percentage purity is the percentage of a pure compound in an impure sample.

$$
\% \text { purity }=\frac{\text { mass of pure compound in sample }}{\text { total mass of impure sample }} \times 100
$$

Exercise:

A 150.0 g sample of copper ore contains 87.3 g of pure copper. Calculate the percentage purity.

$$
\% \text { purity }=\frac{87.3}{150.0} \times 100=58.2 \%
$$

Calculating empirical formula from combustion analysis

Menthol is an organic compound composed of C, H and O atoms. The complete combustion of 0.1005 g of menthol produces 0.2829 g of CO_{2} and 0.1159 g of $\mathrm{H}_{2} \mathrm{O}$. Calculate the empirical formula of menthol.

1. Calculate the mass of carbon in CO_{2} and convert to mol.

Calculate the mass of C in 0.2829 g of $\mathrm{CO}_{2} \quad$ Convert to amount in mol (n)

$$
\frac{12.01}{44.01} \times 0.2829=0.07720 \mathrm{~g} \text { of } \mathrm{C} \quad n=\frac{0.07720}{12.01}=6.428 \times 10^{-3} \mathrm{~mol} \mathrm{C}
$$

2. Calculate the mass of H in $\mathrm{H}_{2} \mathrm{O}$ and convert to mol.

Calculate the mass of H in 0.1159 g of $\mathrm{H}_{2} \mathrm{O} \quad$ Convert to amount in $\mathrm{mol}(n)$

$$
\frac{2.02}{18.02} \times 0.1159=0.01299 \mathrm{~g} \text { of } \mathrm{H} \quad n=\frac{0.01299}{1.01}=0.01286 \mathrm{~mol} \mathrm{H}
$$

3. Calculate the mass of O by subtracting the mass of carbon and mass of hydrogen from original mass of menthol. Convert to amount in mol.

Calculate the mass of O in 0.1005 g of menthol
Convert to amount in mol (n)
$0.1005-0.07720-0.01299=0.01031 \mathrm{~g} \mathrm{O} \quad n=\frac{0.01031}{16.00}=6.444 \times 10^{-4} \mathrm{~mol} \mathrm{O}$
4. Divide each amount by the smallest to get the lowest whole number ratio.
$6.428 \times 10^{-3} \mathrm{~mol} \mathrm{C} \quad 0.01286 \mathrm{~mol} \mathrm{H} \quad 6.444 \times 10^{-4} \mathrm{~mol} \mathrm{O}$

6.444×10^{-4}	6.444×10^{-4}	6.444×10^{-4}
10	20	1

Empirical formula: $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$

