MSJChem - Tutorial videos for IB Chemistry
  • Home
    • About
    • Blog
    • Online tutoring
    • Privacy policy
  • Member's Area
  • Videos (first exams 2025)
    • Structure 1.1 Models of the particulate nature of matter
    • Structure 1.2 The nuclear atom >
      • Structure 1.2 HL The nuclear atom
    • Structure 1.3 Electron configurations >
      • Structure 1.3 Electron configurations HL
    • Structure 1.4 Counting particles by mass: The mole
    • Structure 1.5 Ideal gases
    • Structure 2.1 The ionic model
    • Structure 2.2 The covalent model >
      • Structure 2.2 The covalent model (HL)
    • Structure 2.3 The metallic model
    • Structure 2.4 From models to materials
    • Structure 3.1 The periodic table : Classification of elements >
      • Structure 3.1 The periodic table: Classification of elements (HL)
    • Structure 3.2 Functional groups: Classification of organic compounds >
      • Structure 3.2 Functional groups: Classification of organic compounds (HL)
    • Reactivity 1.1 Measuring enthalpy changes
    • Reactivity 1.2 Energy cycles in reactions >
      • Reactivity 1.2 Energy cycles in reactions (HL)
    • Reactivity 1.3 Energy from fuels
    • Reactivity 1.4 Entropy and spontaneity (HL)
    • Reactivity 2.1 How much? The amount of chemical change
    • Reactivity 2.2 How fast? The rate of chemical change >
      • Reactivity 2.2 How fast? The rate of chemical change (HL)
    • Reactivity 2.3 How far? The extent of chemical change >
      • Topic 6 Kinetics
      • Topic 7 Equilibrium
      • Topic 8 Acids and bases
      • Topic 9 Oxidation and reduction
      • Topic 10 Organic chemistry
      • Topic 11 Measurement and data processing
      • Topic 12 Atomic structure HL
      • Topic 13 Periodicity HL
      • Topic 14 Bonding HL
      • Topic 15 Energetics HL
      • Topic 16 Kinetics HL
      • Topic 17 Equilibrium HL
      • Topic 18 Acids and bases HL
      • Topic 19 Redox HL
      • Topic 20 Organic chemistry HL
      • Options (last exams 2024) >
        • SL Option A
        • HL Option A
        • SL Option B
        • HL Option B
        • SL Option C
        • HL Option C
        • SL Option D
        • HL Option D >
          • Exam review (last exams 2024)
      • Reactivity 2.3 How far? The extent of chemical change (HL)
    • Reactivity 3.1 Proton transfer reactions >
      • Reactivity 3.1 Proton transfer reactions (HL)
    • Reactivity 3.2 Electron transfer reactions >
      • Reactivity 3.2 Electron transfer reactions (HL)
    • Reactivity 3.3 Electron sharing reactions
    • Reactivity 3.4 Electron-pair sharing reactions >
      • Reactivity 3.4 Electron-pair sharing reactions (HL)
Picture


Reactivity 1.2 Energy cycles in reactions (HL)
Reactivity 1.2.3 and 1.2.4
Understandings:
  • Standard enthalpy changes of combustion, ΔHc, and enthalpy of formation, ΔHf, data are used in thermodynamic calculations (1.2.3).
  • An application of Hess’s law uses enthalpy of formation data or enthalpy of combustion data to calculate the enthalpy change (1.2.4). 
Learning outcomes:
  • Deduce equations and solutions to problems involving these terms (1.2.3).
  • Calculate enthalpy changes of a reaction using ΔHf data or ΔHc data (1.2.4). 
  • ΔH = ΣΔHc reactants − ΣΔHc products
  • ΔH = ΣΔHf products − ΣΔHf reactants
Additional notes:
  • Enthalpy of combustion and formation data are given in the data booklet. 
  • The above equations are given in the data booklet. 
Linking questions:
  • Structure 2.2 Would you expect allotropes of an element, such as diamond and graphite, to have different ΔH values?
Picture
This video covers how to calculate the enthalpy change for a reaction using enthalpy of formation data. 
Picture
This video covers how to calculate the enthalpy change for a reaction using enthalpy of combustion data. 

Reactivity 1.2.5
Understandings:
  • A Born–Haber cycle is an application of Hess’s law, used to show energy changes in the formation of an ionic compound.
Learning outcomes:
  • Interpret and determine values from a Born–Haber cycle for compounds composed of univalent and divalent ions.
Additional notes:
  • The cycle includes: ionization energies, enthalpy of atomization (using sublimation and/or bond enthalpies), electron affinities, lattice enthalpy, enthalpy of formation.
  • The construction of a complete Born–Haber cycle will not be assessed.
Linking questions:
  • Structure 2.1 What are the factors that influence the strength of lattice enthalpy in an ionic compound?
Picture
Part one - this video covers the steps of a Born-Haber cycle. 

Picture
This video covers using a Born Haber cycle to calculate the enthalpy of formation of magnesium chloride. 

Picture
This video covers using a Born Haber cycle to calculate the enthalpy of formation of calcium oxide. 

Picture
This video covers using a Born Haber cycle to calculate the enthalpy of formation of sodium oxide. 

This video covers using a Born Haber cycle to calculate the enthalpy of formation of sodium chloride. 
  • Home
    • About
    • Blog
    • Online tutoring
    • Privacy policy
  • Member's Area
  • Videos (first exams 2025)
    • Structure 1.1 Models of the particulate nature of matter
    • Structure 1.2 The nuclear atom >
      • Structure 1.2 HL The nuclear atom
    • Structure 1.3 Electron configurations >
      • Structure 1.3 Electron configurations HL
    • Structure 1.4 Counting particles by mass: The mole
    • Structure 1.5 Ideal gases
    • Structure 2.1 The ionic model
    • Structure 2.2 The covalent model >
      • Structure 2.2 The covalent model (HL)
    • Structure 2.3 The metallic model
    • Structure 2.4 From models to materials
    • Structure 3.1 The periodic table : Classification of elements >
      • Structure 3.1 The periodic table: Classification of elements (HL)
    • Structure 3.2 Functional groups: Classification of organic compounds >
      • Structure 3.2 Functional groups: Classification of organic compounds (HL)
    • Reactivity 1.1 Measuring enthalpy changes
    • Reactivity 1.2 Energy cycles in reactions >
      • Reactivity 1.2 Energy cycles in reactions (HL)
    • Reactivity 1.3 Energy from fuels
    • Reactivity 1.4 Entropy and spontaneity (HL)
    • Reactivity 2.1 How much? The amount of chemical change
    • Reactivity 2.2 How fast? The rate of chemical change >
      • Reactivity 2.2 How fast? The rate of chemical change (HL)
    • Reactivity 2.3 How far? The extent of chemical change >
      • Topic 6 Kinetics
      • Topic 7 Equilibrium
      • Topic 8 Acids and bases
      • Topic 9 Oxidation and reduction
      • Topic 10 Organic chemistry
      • Topic 11 Measurement and data processing
      • Topic 12 Atomic structure HL
      • Topic 13 Periodicity HL
      • Topic 14 Bonding HL
      • Topic 15 Energetics HL
      • Topic 16 Kinetics HL
      • Topic 17 Equilibrium HL
      • Topic 18 Acids and bases HL
      • Topic 19 Redox HL
      • Topic 20 Organic chemistry HL
      • Options (last exams 2024) >
        • SL Option A
        • HL Option A
        • SL Option B
        • HL Option B
        • SL Option C
        • HL Option C
        • SL Option D
        • HL Option D >
          • Exam review (last exams 2024)
      • Reactivity 2.3 How far? The extent of chemical change (HL)
    • Reactivity 3.1 Proton transfer reactions >
      • Reactivity 3.1 Proton transfer reactions (HL)
    • Reactivity 3.2 Electron transfer reactions >
      • Reactivity 3.2 Electron transfer reactions (HL)
    • Reactivity 3.3 Electron sharing reactions
    • Reactivity 3.4 Electron-pair sharing reactions >
      • Reactivity 3.4 Electron-pair sharing reactions (HL)