MSJChem - Tutorial videos for IB Chemistry
  • Home
    • About
    • Blog
    • Online tutoring
    • Privacy policy
  • Member's Area
  • SL Syllabus (last exams 2024)
    • Topic 1 Stoichiometric relationships
    • Topic 2 Atomic structure
    • Topic 3 Periodicity
    • Topic 4 Bonding
    • Topic 5 Energetics
    • Topic 6 Kinetics
    • Topic 7 Equilibrium
    • Topic 8 Acids and bases
    • Topic 9 Oxidation and reduction
    • Topic 10 Organic chemistry
    • Topic 11 Measurement and data processing
  • HL syllabus (last exams 2024)
    • Topic 12 Atomic structure HL
    • Topic 13 Periodicity HL
    • Topic 14 Bonding HL
    • Topic 15 Energetics HL
    • Topic 16 Kinetics HL
    • Topic 17 Equilibrium HL
    • Topic 18 Acids and bases HL
    • Topic 19 Redox HL
    • Topic 20 Organic chemistry HL
    • Topic 21 Measurement and data processing
  • Options (last exams 2024)
    • SL Option A
    • HL Option A
    • SL Option B
    • HL Option B
    • SL Option C
    • HL Option C
    • SL Option D
    • HL Option D
  • Exam review (last exams 2024)
  • New syllabus (first exams 2025)
    • Structure 1.1 Models of the particulate nature of matter
    • Structure 1.2 The nuclear atom
    • Structure 1.3 Electron configurations >
      • Structure 1.3 Electron configurations HL
    • Structure 1.4 Counting particles by mass: The mole
    • Structure 1.5 Ideal gases
    • Structure 2.1 The ionic model
    • Structure 2.2 The covalent model >
      • Structure 2.2 The covalent model (HL)
    • Structure 2.3 The metallic model
    • Structure 2.4 From models to materials
    • Structure 3.1 The periodic table : Classification of elements >
      • Structure 3.1 The periodic table: Classification of elements (HL)
    • Structure 3.2 Functional groups: Classification of organic compounds >
      • Structure 3.2 Functional groups: Classification of organic compounds (HL)
    • Reactivity 1.1 Measuring enthalpy changes
    • Reactivity 1.2 Energy cycles in reactions >
      • Reactivity 1.2 Energy cycles in reactions (HL)
    • Reactivity 1.3 Energy from fuels
    • Reactivity 1.4 Entropy and spontaneity (HL)
    • Reactivity 2.1 How much? The amount of chemical change
    • Reactivity 2.2 How fast? The rate of chemical change >
      • Reactivity 2.2 How fast? The rate of chemical change (HL)
    • Reactivity 2.3 How far? The extent of chemical change >
      • Reactivity 2.3 How far? The extent of chemical change (HL)
    • Reactivity 3.1 Proton transfer reactions >
      • Reactivity 3.1 Proton transfer reactions (HL)
    • Reactivity 3.2 Electron transfer reactions >
      • Reactivity 3.2 Electron transfer reactions (HL)
    • Reactivity 3.3 Electron sharing reactions
    • Reactivity 3.4 Electron-pair sharing reactions >
      • Reactivity 3.4 Electron-pair sharing reactions (HL)
Picture


Structure 3.2 Functional groups: Classification of organic compounds (HL)
Structure 3.2.7
Understandings:
  • Stereoisomers have the same constitution (atom identities, connectivities and bond multiplicities) but different spatial arrangements of atoms.
Learning outcomes:
  • Describe and explain the features that give rise to cis-trans isomerism; recognize it in non-cyclic alkenes and C3 and C4 cycloalkanes.
  • Draw stereochemical formulas showing the tetrahedral arrangement around a chiral carbon.
  • Describe and explain a chiral carbon atom giving rise to stereoisomers with different optical properties. Recognize a pair of enantiomers as non-superimposable mirror images from 3D modelling (real or virtual).
Additional notes:
  • Nomenclature using the E‐Z system will not be assessed.
  • The terms “chiral”, “optical activity”, “enantiomer” and “racemic” mixture should be understood.
  • Different chemical properties of enantiomers can be limited to the fact that they behave differently in chiral environments.
  • Wedge-dash type representations involving tapered bonds should be used for the representation of enantiomers.
Picture
This video covers cis-trans isomerism. 
Picture
This video covers stereoisomerism. 
Picture
This video covers how to distinguish between two enantiomers using a polarimeter. 

Structure 3.2.8
Understandings:
  • Mass spectrometry (MS) of organic compounds can cause fragmentation of molecules.
Learning outcomes:
  • Deduce information about the structural features of a compound from specific MS fragmentation patterns.
Additional notes:
  • Include reference to the molecular ion.
  • Data on specific MS fragments are provided in the data booklet.
Video coming soon. 

Structure 3.2.9
Understandings:
  • Infrared (IR) spectra can be used to identify the type of bond present in a molecule.
Learning outcomes:
  • Interpret the functional group region of an IR spectrum, using a table of characteristic frequencies (wavenumber/cm–1).
Additional notes:
  • Include reference to the absorption of IR radiation by greenhouse gases.
  • Data for interpretation of IR spectra are given in the data booklet.
Linking questions:
  • Reactivity 1.3 What properties of a greenhouse gas determine its “global warming potential”?
Picture
This video covers IR spectroscopy. 

Structure 3.2.10
Understandings:
  • Proton nuclear magnetic resonance spectroscopy (1H NMR) gives information on the different chemical environments of hydrogen atoms in a molecule.
Learning outcomes:
  • Interpret 1H NMR spectra to deduce the structures of organic molecules from the number of signals, the chemical shifts, and the relative areas under signals (integration traces).​
Picture
This video covers 1H NMR. 
Picture
This video covers how to determine the number of peaks in a 1H NMR spectrum. 

Structure 3.2.11
Understandings:
  • Individual signals can be split into clusters of peaks.
Learning outcomes:
  • Interpret 1H NMR spectra from splitting patterns showing singlets, doublets, triplets and quartets to deduce greater structural detail.
Additional notes:
  • Data for interpretation of 1H NMR spectra are given in the data booklet.​
Picture
This video covers splitting patterns. 

Structure 3.2.12
Understandings:
  • Data from different techniques are often combined in structural analysis.
Learning outcomes:
  • Interpret a variety of data, including analytical spectra, to determine the structure of a molecule.
Picture
This video covers using multiple techniques to determine the identity of an unknown compound. 

Powered by Create your own unique website with customizable templates.
  • Home
    • About
    • Blog
    • Online tutoring
    • Privacy policy
  • Member's Area
  • SL Syllabus (last exams 2024)
    • Topic 1 Stoichiometric relationships
    • Topic 2 Atomic structure
    • Topic 3 Periodicity
    • Topic 4 Bonding
    • Topic 5 Energetics
    • Topic 6 Kinetics
    • Topic 7 Equilibrium
    • Topic 8 Acids and bases
    • Topic 9 Oxidation and reduction
    • Topic 10 Organic chemistry
    • Topic 11 Measurement and data processing
  • HL syllabus (last exams 2024)
    • Topic 12 Atomic structure HL
    • Topic 13 Periodicity HL
    • Topic 14 Bonding HL
    • Topic 15 Energetics HL
    • Topic 16 Kinetics HL
    • Topic 17 Equilibrium HL
    • Topic 18 Acids and bases HL
    • Topic 19 Redox HL
    • Topic 20 Organic chemistry HL
    • Topic 21 Measurement and data processing
  • Options (last exams 2024)
    • SL Option A
    • HL Option A
    • SL Option B
    • HL Option B
    • SL Option C
    • HL Option C
    • SL Option D
    • HL Option D
  • Exam review (last exams 2024)
  • New syllabus (first exams 2025)
    • Structure 1.1 Models of the particulate nature of matter
    • Structure 1.2 The nuclear atom
    • Structure 1.3 Electron configurations >
      • Structure 1.3 Electron configurations HL
    • Structure 1.4 Counting particles by mass: The mole
    • Structure 1.5 Ideal gases
    • Structure 2.1 The ionic model
    • Structure 2.2 The covalent model >
      • Structure 2.2 The covalent model (HL)
    • Structure 2.3 The metallic model
    • Structure 2.4 From models to materials
    • Structure 3.1 The periodic table : Classification of elements >
      • Structure 3.1 The periodic table: Classification of elements (HL)
    • Structure 3.2 Functional groups: Classification of organic compounds >
      • Structure 3.2 Functional groups: Classification of organic compounds (HL)
    • Reactivity 1.1 Measuring enthalpy changes
    • Reactivity 1.2 Energy cycles in reactions >
      • Reactivity 1.2 Energy cycles in reactions (HL)
    • Reactivity 1.3 Energy from fuels
    • Reactivity 1.4 Entropy and spontaneity (HL)
    • Reactivity 2.1 How much? The amount of chemical change
    • Reactivity 2.2 How fast? The rate of chemical change >
      • Reactivity 2.2 How fast? The rate of chemical change (HL)
    • Reactivity 2.3 How far? The extent of chemical change >
      • Reactivity 2.3 How far? The extent of chemical change (HL)
    • Reactivity 3.1 Proton transfer reactions >
      • Reactivity 3.1 Proton transfer reactions (HL)
    • Reactivity 3.2 Electron transfer reactions >
      • Reactivity 3.2 Electron transfer reactions (HL)
    • Reactivity 3.3 Electron sharing reactions
    • Reactivity 3.4 Electron-pair sharing reactions >
      • Reactivity 3.4 Electron-pair sharing reactions (HL)