MSJChem - Tutorial videos for IB Chemistry
  • Home
    • About
    • Blog
    • Online tutoring
    • Privacy policy
  • Member's Area
  • SL Syllabus (last exams 2024)
    • Topic 1 Stoichiometric relationships
    • Topic 2 Atomic structure
    • Topic 3 Periodicity
    • Topic 4 Bonding
    • Topic 5 Energetics
    • Topic 6 Kinetics
    • Topic 7 Equilibrium
    • Topic 8 Acids and bases
    • Topic 9 Oxidation and reduction
    • Topic 10 Organic chemistry
    • Topic 11 Measurement and data processing
  • HL syllabus (last exams 2024)
    • Topic 12 Atomic structure HL
    • Topic 13 Periodicity HL
    • Topic 14 Bonding HL
    • Topic 15 Energetics HL
    • Topic 16 Kinetics HL
    • Topic 17 Equilibrium HL
    • Topic 18 Acids and bases HL
    • Topic 19 Redox HL
    • Topic 20 Organic chemistry HL
    • Topic 21 Measurement and data processing
  • Options (last exams 2024)
    • SL Option A
    • HL Option A
    • SL Option B
    • HL Option B
    • SL Option C
    • HL Option C
    • SL Option D
    • HL Option D
  • Exam review (last exams 2024)
  • New syllabus (first exams 2025)
    • Structure 1.1 Models of the particulate nature of matter
    • Structure 1.2 The nuclear atom
    • Structure 1.3 Electron configurations >
      • Structure 1.3 Electron configurations HL
    • Structure 1.4 Counting particles by mass: The mole
    • Structure 1.5 Ideal gases
    • Structure 2.1 The ionic model
    • Structure 2.2 The covalent model >
      • Structure 2.2 The covalent model (HL)
    • Structure 2.3 The metallic model
    • Structure 2.4 From models to materials
    • Structure 3.1 The periodic table : Classification of elements >
      • Structure 3.1 The periodic table: Classification of elements (HL)
    • Structure 3.2 Functional groups: Classification of organic compounds >
      • Structure 3.2 Functional groups: Classification of organic compounds (HL)
    • Reactivity 1.1 Measuring enthalpy changes
    • Reactivity 1.2 Energy cycles in reactions >
      • Reactivity 1.2 Energy cycles in reactions (HL)
    • Reactivity 1.3 Energy from fuels
    • Reactivity 1.4 Entropy and spontaneity (HL)
    • Reactivity 2.1 How much? The amount of chemical change
    • Reactivity 2.2 How fast? The rate of chemical change >
      • Reactivity 2.2 How fast? The rate of chemical change (HL)
    • Reactivity 2.3 How far? The extent of chemical change >
      • Reactivity 2.3 How far? The extent of chemical change (HL)
    • Reactivity 3.1 Proton transfer reactions >
      • Reactivity 3.1 Proton transfer reactions (HL)
    • Reactivity 3.2 Electron transfer reactions >
      • Reactivity 3.2 Electron transfer reactions (HL)
    • Reactivity 3.3 Electron sharing reactions
    • Reactivity 3.4 Electron-pair sharing reactions >
      • Reactivity 3.4 Electron-pair sharing reactions (HL)
Picture


Reactivity 3.2 Electron transfer reactions (HL)
Reactivity 3.2.12
Understandings:
  • The hydrogen half-cell H2(g) ⇌ 2H+(aq) + 2e– is assigned a standard electrode potential of zero by convention. It is used in the measurement of standard electrode potential, E⦵.
Learning outcomes:
  • Interpret standard electrode potential data in terms of ease of oxidation/reduction.
Additional notes:
  • Standard electrode potentials are given in the data booklet.​
Picture
This video covers standard electrode potentials and the hydrogen half-cell. 
Note that the IB now uses the term hydrogen half-cell instead of SHE (standard hydrogen electrode).


Reactivity 3.2.13
Understandings:
  • Standard cell potential, E⦵  , can be calculated from standard potentials.  E⦵ has a positive value for a spontaneous 
Learning outcomes:
  • Predict whether a reaction is spontaneous in the forward or reverse direction from E⦵.​
Picture
This video covers how to calculate the cell potential. 

Reactivity 3.2.14
Understandings:
  • The equation ΔG⦵ = − nFE⦵  shows the relationship between standard cell change in Gibbs energy and standard electrode potential for a reaction.
Learning outcomes:
  • Determine the value for ΔG⦵ from E⦵ data.
Additional notes:
  • The equation and the value of F in C mol–1 are given in the data booklet.
Linking questions:
  • Reactivity 1.4 How can thermodynamic data also be used to predict the spontaneity of a reaction?
Picture
This video covers how to calculate ΔG for a voltaic cell. 

Reactivity 3.2.15
Understandings:
  • During electrolysis of aqueous solutions, competing reactions can occur at the anode and cathode, including the oxidation and reduction of water.
Learning outcomes:
  • Deduce from standard electrode potentials the products of the electrolysis of aqueous solutions.
Additional notes:
  • Electrolytic processes should include the electrolysis of water and of aqueous solutions.​
Picture
This video covers electrolysis of aqueous solutions. 

Reactivity 3.2.16
Understandings:
  • Electroplating involves the electrolytic coating of an object with a metallic thin layer.
Learning outcomes:
  • Deduce equations for the electrode reactions during electroplating.​
Picture
This video covers electroplating. 

Powered by Create your own unique website with customizable templates.
  • Home
    • About
    • Blog
    • Online tutoring
    • Privacy policy
  • Member's Area
  • SL Syllabus (last exams 2024)
    • Topic 1 Stoichiometric relationships
    • Topic 2 Atomic structure
    • Topic 3 Periodicity
    • Topic 4 Bonding
    • Topic 5 Energetics
    • Topic 6 Kinetics
    • Topic 7 Equilibrium
    • Topic 8 Acids and bases
    • Topic 9 Oxidation and reduction
    • Topic 10 Organic chemistry
    • Topic 11 Measurement and data processing
  • HL syllabus (last exams 2024)
    • Topic 12 Atomic structure HL
    • Topic 13 Periodicity HL
    • Topic 14 Bonding HL
    • Topic 15 Energetics HL
    • Topic 16 Kinetics HL
    • Topic 17 Equilibrium HL
    • Topic 18 Acids and bases HL
    • Topic 19 Redox HL
    • Topic 20 Organic chemistry HL
    • Topic 21 Measurement and data processing
  • Options (last exams 2024)
    • SL Option A
    • HL Option A
    • SL Option B
    • HL Option B
    • SL Option C
    • HL Option C
    • SL Option D
    • HL Option D
  • Exam review (last exams 2024)
  • New syllabus (first exams 2025)
    • Structure 1.1 Models of the particulate nature of matter
    • Structure 1.2 The nuclear atom
    • Structure 1.3 Electron configurations >
      • Structure 1.3 Electron configurations HL
    • Structure 1.4 Counting particles by mass: The mole
    • Structure 1.5 Ideal gases
    • Structure 2.1 The ionic model
    • Structure 2.2 The covalent model >
      • Structure 2.2 The covalent model (HL)
    • Structure 2.3 The metallic model
    • Structure 2.4 From models to materials
    • Structure 3.1 The periodic table : Classification of elements >
      • Structure 3.1 The periodic table: Classification of elements (HL)
    • Structure 3.2 Functional groups: Classification of organic compounds >
      • Structure 3.2 Functional groups: Classification of organic compounds (HL)
    • Reactivity 1.1 Measuring enthalpy changes
    • Reactivity 1.2 Energy cycles in reactions >
      • Reactivity 1.2 Energy cycles in reactions (HL)
    • Reactivity 1.3 Energy from fuels
    • Reactivity 1.4 Entropy and spontaneity (HL)
    • Reactivity 2.1 How much? The amount of chemical change
    • Reactivity 2.2 How fast? The rate of chemical change >
      • Reactivity 2.2 How fast? The rate of chemical change (HL)
    • Reactivity 2.3 How far? The extent of chemical change >
      • Reactivity 2.3 How far? The extent of chemical change (HL)
    • Reactivity 3.1 Proton transfer reactions >
      • Reactivity 3.1 Proton transfer reactions (HL)
    • Reactivity 3.2 Electron transfer reactions >
      • Reactivity 3.2 Electron transfer reactions (HL)
    • Reactivity 3.3 Electron sharing reactions
    • Reactivity 3.4 Electron-pair sharing reactions >
      • Reactivity 3.4 Electron-pair sharing reactions (HL)